Index

A B C D E F G H I K L M N O P Q R S T U V W 
All Classes and Interfaces|All Packages

A

add(FieldName, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
Adds a fieldName and value to the list.
addAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
addAgeFeature(NDManager, FieldName, FieldName, int, boolean, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
Adds on 'age' feature to the TimeSeriesData.
addAgeFeature(NDManager, FieldName, FieldName, int, boolean, TimeSeriesData, boolean) - Static method in class ai.djl.timeseries.transform.feature.Feature
Adds on 'age' feature to the TimeSeriesData.
addAgeFeature(NDManager, FieldName, FieldName, int, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
Adds on 'age' feature to the TimeSeriesData, set logScale = ture
AddAgeFeature - Class in ai.djl.timeseries.transform.feature
Add age feature through the prediction length.
AddAgeFeature(FieldName, FieldName, int) - Constructor for class ai.djl.timeseries.transform.feature.AddAgeFeature
Constructs a AddAgeFeature.
AddAgeFeature(FieldName, FieldName, int, boolean) - Constructor for class ai.djl.timeseries.transform.feature.AddAgeFeature
Constructs a AddAgeFeature.
addFeature(String, FieldName) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Add a feature to the features set of the filed name.
addFeature(String, FieldName, boolean) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Add a feature to the features set of the filed name with onehot encoding.
addFieldFeature(FieldName, Feature) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Add the features to the correspongding FieldName.
addObservedValuesIndicator(NDManager, FieldName, FieldName, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
Replaces missing values in a NDArray (NaNs) with a dummy value and adds an "observed"-indicator that is "1" when values are observed and "0" when values are missing.
AddObservedValuesIndicator - Class in ai.djl.timeseries.transform.feature
Add observed value for the target data.
AddObservedValuesIndicator(FieldName, FieldName) - Constructor for class ai.djl.timeseries.transform.feature.AddObservedValuesIndicator
addTimeFeature(NDManager, FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
Adds a set of time features.
addTimeFeature(NDManager, FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String, TimeSeriesData, boolean) - Static method in class ai.djl.timeseries.transform.feature.Feature
Adds a set of time features.
AddTimeFeature - Class in ai.djl.timeseries.transform.feature
Add time feature by frequency.
AddTimeFeature(FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String) - Constructor for class ai.djl.timeseries.transform.feature.AddTimeFeature
Constructs a AddTimeFeature.
AffineTransformed - Class in ai.djl.timeseries.distribution
Represents the distribution of an affinely transformed random variable.
AffineTransformed(Distribution, NDArray, NDArray) - Constructor for class ai.djl.timeseries.distribution.AffineTransformed
Construct a new AffineTransformed
ai.djl.timeseries - package ai.djl.timeseries
Contains classes to support TimeSeries in djl.
ai.djl.timeseries.block - package ai.djl.timeseries.block
Contains the basic block classes.
ai.djl.timeseries.dataset - package ai.djl.timeseries.dataset
Contains the basic dataset classes.
ai.djl.timeseries.distribution - package ai.djl.timeseries.distribution
Contains classes to support distribution in djl.
ai.djl.timeseries.distribution.output - package ai.djl.timeseries.distribution.output
Contains classes to support construct distribution and project arguments.
ai.djl.timeseries.evaluator - package ai.djl.timeseries.evaluator
Contains the evaluator classes.
ai.djl.timeseries.model.deepar - package ai.djl.timeseries.model.deepar
Contains blocks for deepar models.
ai.djl.timeseries.timefeature - package ai.djl.timeseries.timefeature
Contains utils to get time feature from prediction frequency.
ai.djl.timeseries.transform - package ai.djl.timeseries.transform
Contains transform classes.
ai.djl.timeseries.transform.convert - package ai.djl.timeseries.transform.convert
Contains transform for TimeSeriesData to convert NDArray.
ai.djl.timeseries.transform.feature - package ai.djl.timeseries.transform.feature
Contains transform for TimeSeriesData to generate time feature.
ai.djl.timeseries.transform.field - package ai.djl.timeseries.transform.field
Contains transform for TimeSeriesData to CRUD name field.
ai.djl.timeseries.transform.split - package ai.djl.timeseries.transform.split
Contains transform for TimeSeriesData to split time feature for inference and train.
ai.djl.timeseries.translator - package ai.djl.timeseries.translator
Contains translators for TimeSeries models inference.
ArgProj - Class in ai.djl.timeseries.distribution.output
A Block used to map the output of a dense layer to statistical parameters, like mean and standard deviation.
ArgProj.Builder - Class in ai.djl.timeseries.distribution.output
The Builder to construct a ArgProj type of Block.
argsDim - Variable in class ai.djl.timeseries.distribution.output.DistributionOutput
 
asArray(FieldName, int, DataType, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
Converts the data type of NDArray and check its dimension.
asArray(FieldName, int, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
Converts the data type of NDArray and check its dimension.
AsArray - Class in ai.djl.timeseries.transform.convert
Convert the data type of NDArray and check its dimension.
AsArray(FieldName, int) - Constructor for class ai.djl.timeseries.transform.convert.AsArray
Constructs a AsArray.
AsArray(FieldName, int, DataType) - Constructor for class ai.djl.timeseries.transform.convert.AsArray
Constructs a AsArray.
availableSize() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
axis - Variable in class ai.djl.timeseries.transform.InstanceSampler
 

B

BaseBuilder() - Constructor for class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
BaseTimeSeriesTranslator - Class in ai.djl.timeseries.translator
Built-in Translator that provides default TimeSeriesTranslator config process.
BaseTimeSeriesTranslator(BaseTimeSeriesTranslator.BaseBuilder<?>) - Constructor for class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
Constructs a new TimeSeriesTranslator instance with the provided builder.
BaseTimeSeriesTranslator.BaseBuilder<T extends BaseTimeSeriesTranslator.BaseBuilder<T>> - Class in ai.djl.timeseries.translator
A builder to extend for all classes extend the BaseTimeSeriesTranslator.
batchifier - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
build() - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
Return the constructed FeatureEmbedder.
build() - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
Return the constructed FeatureEmbedding.
build() - Method in class ai.djl.timeseries.block.MeanScaler.Builder
Return the constructed MeanScaler.
build() - Method in class ai.djl.timeseries.block.NopScaler.Builder
Return constructed NOPScaler.
build() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Build the new CsvTimeSeriesDataset.
build() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Build the new M5Forecast.
build() - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
Build a Distribution.
build() - Method in class ai.djl.timeseries.distribution.NegativeBinomial.Builder
Build a Distribution.
build() - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
Build a ArgProj block.
build() - Method in class ai.djl.timeseries.distribution.StudentT.Builder
Build a Distribution.
build() - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
Builds the translator.
build() - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
Builds the translator.
builder() - Static method in class ai.djl.timeseries.block.FeatureEmbedder
Return a builder to build an FeatureEmbedder.
builder() - Static method in class ai.djl.timeseries.block.FeatureEmbedding
Return a builder to build an FeatureEmbedding.
builder() - Static method in class ai.djl.timeseries.block.MeanScaler
Create a builder to build a MeanScaler.
builder() - Static method in class ai.djl.timeseries.block.NopScaler
Create a builder to build a NopScaler.
builder() - Static method in class ai.djl.timeseries.dataset.M5Forecast
Creates a builder to build a M5Forecast.
builder() - Static method in class ai.djl.timeseries.distribution.NegativeBinomial
Creates a builder to build a NegativeBinomial.
builder() - Static method in class ai.djl.timeseries.distribution.output.ArgProj
Creates a builder to build a ArgProj.
builder() - Static method in class ai.djl.timeseries.distribution.StudentT
Creates a builder to build a NegativeBinomial.
builder() - Static method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Create a builder to build a DeepARTrainingNetwork or DeepARPredictionNetwork.
builder() - Static method in class ai.djl.timeseries.translator.DeepARTranslator
Creates a builder to build a DeepARTranslator.
builder() - Static method in class ai.djl.timeseries.translator.TransformerTranslator
Creates a builder to build a TransformerTranslator.
builder(Map<String, ?>) - Static method in class ai.djl.timeseries.translator.DeepARTranslator
Creates a builder to build a DeepARTranslator.
builder(Map<String, ?>) - Static method in class ai.djl.timeseries.translator.TransformerTranslator
Creates a builder to build a TransformerTranslator.
Builder() - Constructor for class ai.djl.timeseries.block.FeatureEmbedder.Builder
 
Builder() - Constructor for class ai.djl.timeseries.block.FeatureEmbedding.Builder
 
Builder() - Constructor for class ai.djl.timeseries.block.NopScaler.Builder
 
Builder() - Constructor for class ai.djl.timeseries.distribution.NegativeBinomial.Builder
 
Builder() - Constructor for class ai.djl.timeseries.distribution.output.ArgProj.Builder
 
Builder() - Constructor for class ai.djl.timeseries.distribution.StudentT.Builder
 
Builder() - Constructor for class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
 
buildPredictionNetwork() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
buildTrainingNetwork() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Build a DeepARTrainingNetwork block.

C

call(NDArray) - Method in class ai.djl.timeseries.transform.ExpectedNumInstanceSampler
Call the sample process.
call(NDArray) - Method in class ai.djl.timeseries.transform.InstanceSampler
Call the sample process.
call(NDArray) - Method in class ai.djl.timeseries.transform.PredictionSplitSampler
Call the sample process.
cardinality - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
configPostProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
contextLength - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset
 
contextLength - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
 
contextLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
contextLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
contextLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
 
Convert - Class in ai.djl.timeseries.transform.convert
A class used to convert the shape of NDArray in TimeSeriesData.
copyDim(int) - Method in class ai.djl.timeseries.SampleForecast
Returns a new Forecast object with only the selected sub-dimension.
createPredictionTransformation(NDManager) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Construct a prediction transformation of deepar model.
createTrainingTransformation(NDManager) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Construct a training transformation of deepar model.
CsvBuilder() - Constructor for class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
 
csvFormat - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
 
csvFormat - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 
csvRecords - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 
CsvTimeSeriesDataset - Class in ai.djl.timeseries.dataset
CsvTimeSeriesDataset represents the dataset that store in a .csv file.
CsvTimeSeriesDataset(CsvTimeSeriesDataset.CsvBuilder<?>) - Constructor for class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 
CsvTimeSeriesDataset.CsvBuilder<T extends CsvTimeSeriesDataset.CsvBuilder<T>> - Class in ai.djl.timeseries.dataset
Used to build a CsvTimeSeriesDataset.
csvUrl - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
 
csvUrl - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 

D

dataRequired() - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
dayOfMonth(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by days fo the month.
dayOfWeek(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by days of the week.
dayOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by days of the year.
DeepARNetwork - Class in ai.djl.timeseries.model.deepar
Implements the deepar model.
DeepARNetwork.Builder - Class in ai.djl.timeseries.model.deepar
The builder to construct a DeepARTrainingNetwork or DeepARPredictionNetwork.
DeepARPredictionNetwork - Class in ai.djl.timeseries.model.deepar
A deepar implements for prediction.
DeepARTrainingNetwork - Class in ai.djl.timeseries.model.deepar
A deepar implements for training.
DeepARTranslator - Class in ai.djl.timeseries.translator
The Translator for DeepAR time series forecasting tasks.
DeepARTranslator(DeepARTranslator.Builder) - Constructor for class ai.djl.timeseries.translator.DeepARTranslator
Constructs a new DeepARTranslator instance.
DeepARTranslator.Builder - Class in ai.djl.timeseries.translator
The builder for DeepAR translator.
DeepARTranslatorFactory - Class in ai.djl.timeseries.translator
A TranslatorFactory that creates a DeepARTranslator instance.
DeepARTranslatorFactory() - Constructor for class ai.djl.timeseries.translator.DeepARTranslatorFactory
 
deFeaturize(float[]) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
dim - Variable in class ai.djl.timeseries.block.Scaler
 
dim - Variable in class ai.djl.timeseries.block.Scaler.ScalerBuilder
 
distrArgs - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
 
Distribution - Class in ai.djl.timeseries.distribution
An abstract class representing probability distribution.
Distribution() - Constructor for class ai.djl.timeseries.distribution.Distribution
 
Distribution.DistributionBuilder<T extends Distribution.DistributionBuilder<T>> - Class in ai.djl.timeseries.distribution
A builder to extend for all classes extend the Distribution.
distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
Return the associated DistributionBuilder, given the collection of constructor arguments and, optionally, a scale tensor.
distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
Return the associated DistributionBuilder, given the collection of constructor arguments and, optionally, a scale tensor.
distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.StudentTOutput
Return the associated DistributionBuilder, given the collection of constructor arguments and, optionally, a scale tensor.
DistributionBuilder() - Constructor for class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
 
DistributionLoss - Class in ai.djl.timeseries.distribution
DistributionLoss calculates loss for a given distribution.
DistributionLoss(String, DistributionOutput) - Constructor for class ai.djl.timeseries.distribution.DistributionLoss
Calculates Distribution Loss between the label and distribution.
DistributionOutput - Class in ai.djl.timeseries.distribution.output
A class to construct a distribution given the output of a network.
DistributionOutput() - Constructor for class ai.djl.timeseries.distribution.output.DistributionOutput
 
distrOutput - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
Convert arguments to the right shape and domain.
domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
Convert arguments to the right shape and domain.
domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.StudentTOutput
Convert arguments to the right shape and domain.

E

embedder - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
embeddingDimension - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
equals(Object) - Method in class ai.djl.timeseries.TimeSeriesData
*
evaluate(NDList, NDList) - Method in class ai.djl.timeseries.distribution.DistributionLoss
evaluate(NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
evaluateHelper(NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
 
ExpectedNumInstanceSampler - Class in ai.djl.timeseries.transform
Keeps track of the average time series length and adjusts the probability per time point such that on average `num_instances` training examples are generated per time series.
ExpectedNumInstanceSampler(int, int, int, double) - Constructor for class ai.djl.timeseries.transform.ExpectedNumInstanceSampler
Construct a new instance of ExpectedNumInstanceSampler.

F

FEAT_AGE - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_CONST - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_DYNAMIC - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_DYNAMIC_CAT - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_DYNAMIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_DYNAMIC_REAL_LEGACY - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_STATIC_CAT - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_STATIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
FEAT_TIME - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
Feature - Class in ai.djl.timeseries.transform.feature
this is a class use to add feature in TimeSeriesData.
FeatureEmbedder - Class in ai.djl.timeseries.block
Embed a sequence of categorical features.
FeatureEmbedder.Builder - Class in ai.djl.timeseries.block
The builder to construct a FeatureEmbedder type of Block.
FeatureEmbedding - Class in ai.djl.timeseries.block
An implement of nn.embedding.
FeatureEmbedding.Builder - Class in ai.djl.timeseries.block
The builder to construct a FeatureEmbedding type of Block.
featurize(DynamicBuffer, String) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
featurize(String) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
Return the parsed time data.
featurize(String) - Method in class ai.djl.timeseries.dataset.TimeFeaturizers.ConstantTimeFeaturizer
Return the parsed time data.
featurize(String) - Method in class ai.djl.timeseries.dataset.TimeFeaturizers.PatternTimeFeaturizer
Return the parsed time data.
Field - Class in ai.djl.timeseries.transform.field
A utility class that used to operate field name in TimeSeriesData.
fieldFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
 
fieldFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 
FieldName - Enum Class in ai.djl.timeseries.dataset
Represents the name field of elements in a TimeSeriesData as an enum.
Forecast - Class in ai.djl.timeseries
An abstract class representing the forecast results for the time series data.
Forecast(LocalDateTime, int, String) - Constructor for class ai.djl.timeseries.Forecast
Constructs a Forecast instance.
FORECAST_START - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.FeatureEmbedder
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.FeatureEmbedding
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.MeanScaler
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.NopScaler
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.distribution.output.ArgProj
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.model.deepar.DeepARPredictionNetwork
forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.model.deepar.DeepARTrainingNetwork
freq - Variable in class ai.djl.timeseries.Forecast
 
freq - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
freq - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
freq - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
 
freq() - Method in class ai.djl.timeseries.Forecast
Returns the prediction frequency like "D", "H"....

G

get(NDManager, long) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset
TimeSeriesDataset override the get function so that it can preprocess the feature data as timeseries package way.
get(FieldName) - Method in class ai.djl.timeseries.TimeSeriesData
Returns the value for the fieldName.
getAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
getArgsArray() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
Return an array containing all the argument names.
getArgsProj() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
Return the corresponding projection block based on the arguments dimension of different distributions.
getArgsProj(String) - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
Return the corresponding projection block based on the arguments dimension of different ditributions.
getAvailableFeatures() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Returns the available features of this dataset.
getBatchifier() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
getBounds(NDArray) - Method in class ai.djl.timeseries.transform.InstanceSampler
Returns the sampled indices bounds.
getCardinality() - Method in class ai.djl.timeseries.dataset.M5Forecast
Return the cardinality of the dataset.
getCell(long, String) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
Returns a cell in the dataset.
getConstantTimeFeaturizer(LocalDateTime) - Static method in class ai.djl.timeseries.dataset.TimeFeaturizers
getContextLength() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Return the context length.
getForecastStartTime() - Method in class ai.djl.timeseries.TimeSeriesData
Returns the time series forecasting time.
getHistoryLength() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Return the history length.
getLagsForFreq(String) - Static method in class ai.djl.timeseries.timefeature.Lag
Generates a list of lags that are appropriate for the given frequency string.
getLagsForFreq(String, int) - Static method in class ai.djl.timeseries.timefeature.Lag
Generates a list of lags that are appropriate for the given frequency string.
getMultipleOfTimeOffset() - Method in class ai.djl.timeseries.timefeature.TimeOffset
Return the multiple of TimeOffset.
getName() - Method in class ai.djl.timeseries.timefeature.TimeOffset
Return the granularity name of TimeOffset.
getNumSamples() - Method in class ai.djl.timeseries.SampleForecast
Returns the number of samples representing the forecast.
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.FeatureEmbedder
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.FeatureEmbedding
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.Scaler
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.distribution.output.ArgProj
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.model.deepar.DeepARPredictionNetwork
getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.model.deepar.DeepARTrainingNetwork
getPatternTimeFeaturizer(String) - Static method in class ai.djl.timeseries.dataset.TimeFeaturizers
getPredictionLength() - Method in class ai.djl.timeseries.Forecast
Returns the time length of forecast.
getRowFeatures(NDManager, long, List<Feature>) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
Returns the designated features (either data or label features) from a row.
getSortedSamples() - Method in class ai.djl.timeseries.SampleForecast
Returns the sorted sample array.
getStartTime() - Method in class ai.djl.timeseries.TimeSeriesData
Returns the time series start time.
getStartTime(long) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
Return the prediction start time for the given index.
getSupportedTypes() - Method in class ai.djl.timeseries.translator.DeepARTranslatorFactory
getSupportedTypes() - Method in class ai.djl.timeseries.translator.TransformerTranslatorFactory
getTimeSeriesData(NDManager, long) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
Return the TimeSeriesData for the given index from the TimeSeriesDataset.
getTimeSeriesData(NDManager, long) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset
Return the TimeSeriesData for the given index from the TimeSeriesDataset.
getValueInSupport() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
A float that will have a valid numeric value when computing the log-loss of the corresponding distribution.

H

hashCode() - Method in class ai.djl.timeseries.TimeSeriesData
*
historyLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
hourOfDay(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by hours.

I

IdentityTransform() - Constructor for class ai.djl.timeseries.transform.TimeSeriesTransform.IdentityTransform
 
identityTransformation() - Static method in interface ai.djl.timeseries.transform.TimeSeriesTransform
Construct a list of TimeSeriesTransform that performs identity function.
initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.block.FeatureEmbedder
initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.distribution.output.ArgProj
initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
InstanceSampler - Class in ai.djl.timeseries.transform
An InstanceSampler is called with the time series ``ts``, and returns a set of indices at which training instances will be generated.
InstanceSampler(int, int, int) - Constructor for class ai.djl.timeseries.transform.InstanceSampler
Constructs a new instance of InstanceSampler.
instanceSplit(NDManager, FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, int, boolean, FieldName[], float, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.split.Split
Selects training instances, by slicing the target and other time series like arrays at random points in training mode or at the last time point in prediction mode.
instanceSplit(NDManager, FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, FieldName[], float, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.split.Split
Selects training instances, by slicing the target and other time series like arrays at random points in training mode or at the last time point in prediction mode.
InstanceSplit - Class in ai.djl.timeseries.transform.split
Use the InstanceSampler to split the time series data into past and future part.
InstanceSplit(FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, int, boolean, FieldName[], float) - Constructor for class ai.djl.timeseries.transform.split.InstanceSplit
Constructs a InstanceSplit.
InstanceSplit(FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, FieldName[], float) - Constructor for class ai.djl.timeseries.transform.split.InstanceSplit
Constructs a InstanceSplit.
IS_PAD - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
ITEM_ID - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 

K

keepDim - Variable in class ai.djl.timeseries.block.Scaler
 
keepDim - Variable in class ai.djl.timeseries.block.Scaler.ScalerBuilder
 

L

Lag - Class in ai.djl.timeseries.timefeature
This class contains static method for get lags from frequency.
laggedSequenceValues(List<Integer>, NDArray, NDArray) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Construct an NDArray of lagged values from a given sequence.
lagsSeq - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
loc - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
 
logProb(NDArray) - Method in class ai.djl.timeseries.distribution.AffineTransformed
Compute the log of the probability density/mass function evaluated at target.
logProb(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution
Compute the log of the probability density/mass function evaluated at target.
logProb(NDArray) - Method in class ai.djl.timeseries.distribution.NegativeBinomial
Compute the log of the probability density/mass function evaluated at target.
logProb(NDArray) - Method in class ai.djl.timeseries.distribution.StudentT
Compute the log of the probability density/mass function evaluated at target.

M

M5Forecast - Class in ai.djl.timeseries.dataset
M5Forecast(M5Forecast.Builder) - Constructor for class ai.djl.timeseries.dataset.M5Forecast
Creates a new instance of M5Forecast with the given necessary configurations.
M5Forecast.Builder - Class in ai.djl.timeseries.dataset
Used to build a M5Forecast.
mean() - Method in class ai.djl.timeseries.distribution.AffineTransformed
Return the mean of the distribution.
mean() - Method in class ai.djl.timeseries.distribution.Distribution
Return the mean of the distribution.
mean() - Method in class ai.djl.timeseries.distribution.NegativeBinomial
Return the mean of the distribution.
mean() - Method in class ai.djl.timeseries.distribution.StudentT
Return the mean of the distribution.
mean() - Method in class ai.djl.timeseries.Forecast
Computes and returns the forecast mean.
mean() - Method in class ai.djl.timeseries.SampleForecast
Computes and returns the forecast mean.
MeanScaler - Class in ai.djl.timeseries.block
A class computes a scaling factor as the weighted average absolute value along dimension dim, and scales the data accordingly.
MeanScaler.Builder - Class in ai.djl.timeseries.block
The builder to construct a MeanScaler.
median() - Method in class ai.djl.timeseries.Forecast
Computes the median of forecast.
minFuture - Variable in class ai.djl.timeseries.transform.InstanceSampler
 
minPast - Variable in class ai.djl.timeseries.transform.InstanceSampler
 
minuteOfHour(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by minutes.
monthOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by months of the year.

N

NegativeBinomial - Class in ai.djl.timeseries.distribution
Negative binomial distribution.
NegativeBinomial.Builder - Class in ai.djl.timeseries.distribution
The builder to construct a NegativeBinomial.
NegativeBinomialOutput - Class in ai.djl.timeseries.distribution.output
NegativeBinomialOutput is a DistributionOutput for the negative binomial distribution.
NegativeBinomialOutput() - Constructor for class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
Construct a negative binomial output with two arguments, total_count and logits.
newInstance(Class<I>, Class<O>, Model, Map<String, ?>) - Method in class ai.djl.timeseries.translator.DeepARTranslatorFactory
newInstance(Class<I>, Class<O>, Model, Map<String, ?>) - Method in class ai.djl.timeseries.translator.TransformerTranslatorFactory
newTestSplitSampler() - Static method in class ai.djl.timeseries.transform.PredictionSplitSampler
Creates a new instance PredictionSplitSampler for test.
newValidationSplitSampler() - Static method in class ai.djl.timeseries.transform.PredictionSplitSampler
Creates a new instance PredictionSplitSampler for validation.
NopScaler - Class in ai.djl.timeseries.block
A class assigns a scaling factor equal to 1 along dimension dim, and therefore applies no scaling to the input data.
NopScaler.Builder - Class in ai.djl.timeseries.block
The builder to construct a NopScaler.
numParallelSamples - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 

O

OBSERVED_VALUES - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
optArtifactId(String) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Sets the optional artifactId.
optBachifier(Batchifier) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
Sets the Batchifier for the Translator.
optContextLength(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional context length.
optCsvFile(Path) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Set the optional CSV file path.
optCsvUrl(String) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Set the optional CSV file URL.
optDistrOutput(DistributionOutput) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional DistributionOutput default StudentTOutput.
optDropRate(float) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional number of rnn drop rate.
optEmbeddingDimension(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional embedding dimension.
optGroupId(String) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Sets optional groupId.
optHiddenSize(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional number of rnn hidden size.
optKeepDim(boolean) - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
Set whether to keep dim.
optLagsSeq(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional lags sequence, default generate from frequency.
optLoc(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
Set the affine location of the probability.
optMinimumScale(float) - Method in class ai.djl.timeseries.block.MeanScaler.Builder
Sets the minimum scalar of the data.
optNumLayers(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional number of rnn layers.
optNumParallelSamples(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the optional number parallel samples.
optPrefix(String) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
Set the block name prefix.
optRepository(Repository) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Sets the optional repository.
optScale(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
Set the affine scale for the probability distribution.
optUsage(Dataset.Usage) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
Sets the optional usage.
optUseFeatDynamicReal(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set whether to use dynamic real feature.
optUseFeatStaticCat(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set whether to use static categorical feature.
optUseFeatStaticReal(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set whether to use static real feature.

P

paramProj - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
PAST_FEAT_DYNAMIC - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
PAST_FEAT_DYNAMIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
predictionLength - Variable in class ai.djl.timeseries.Forecast
 
predictionLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
predictionLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
predictionLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
 
PredictionSplitSampler - Class in ai.djl.timeseries.transform
Sampler used for prediction.
PredictionSplitSampler(int, int, int, boolean) - Constructor for class ai.djl.timeseries.transform.PredictionSplitSampler
Constructs a new instance of PredictionSplitSampler.
prepare(Progress) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
prepare(Progress) - Method in class ai.djl.timeseries.dataset.M5Forecast
prepareFeaturizers() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
Prepares the PreparedFeaturizers.
processInput(TranslatorContext, TimeSeriesData) - Method in class ai.djl.timeseries.translator.DeepARTranslator
processInput(TranslatorContext, TimeSeriesData) - Method in class ai.djl.timeseries.translator.TransformerTranslator
processOutput(TranslatorContext, NDList) - Method in class ai.djl.timeseries.translator.DeepARTranslator
processOutput(TranslatorContext, NDList) - Method in class ai.djl.timeseries.translator.TransformerTranslator

Q

quantile(float) - Method in class ai.djl.timeseries.Forecast
Computes a quantile from the predicted distribution.
quantile(float) - Method in class ai.djl.timeseries.SampleForecast
Computes a quantile from the predicted distribution.
quantile(String) - Method in class ai.djl.timeseries.Forecast
Computes a quantile from the predicted distribution.

R

remove(FieldName) - Method in class ai.djl.timeseries.TimeSeriesData
Removes the key-value pair for the FieldName.
removeFields(List<FieldName>, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
Remove fields names if present.
RemoveFields - Class in ai.djl.timeseries.transform.field
Remove the field names.
RemoveFields(List<FieldName>) - Constructor for class ai.djl.timeseries.transform.field.RemoveFields
Constructs a RemoveFields instance.
resetAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
Rmsse - Class in ai.djl.timeseries.evaluator
A class used to calculate Root Mean Squared Scaled Error.
Rmsse(DistributionOutput) - Constructor for class ai.djl.timeseries.evaluator.Rmsse
Creates an evaluator that computes Root Mean Squared Scaled Error across axis 1.
Rmsse(String, int, DistributionOutput) - Constructor for class ai.djl.timeseries.evaluator.Rmsse
Creates an evaluator that computes Root Mean Squared Scaled Error across axis 1.
rnn - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 

S

sample() - Method in class ai.djl.timeseries.distribution.Distribution
Draw samples from the distribution.
sample(int) - Method in class ai.djl.timeseries.distribution.AffineTransformed
Draw samples from the distribution.
sample(int) - Method in class ai.djl.timeseries.distribution.Distribution
Draw samples from the distribution.
sample(int) - Method in class ai.djl.timeseries.distribution.NegativeBinomial
Draw samples from the distribution.
sample(int) - Method in class ai.djl.timeseries.distribution.StudentT
Draw samples from the distribution.
SampleForecast - Class in ai.djl.timeseries
A Forecast object, where the predicted distribution is represented internally as samples.
SampleForecast(NDArray, LocalDateTime, String) - Constructor for class ai.djl.timeseries.SampleForecast
Constructs a SampleForeCast.
scale - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
 
scaler - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
Scaler - Class in ai.djl.timeseries.block
An abstract class used to scale data.
Scaler.ScalerBuilder<T extends Scaler.ScalerBuilder<T>> - Class in ai.djl.timeseries.block
A builder to extend for all classes extend the Scaler.
ScalerBuilder() - Constructor for class ai.djl.timeseries.block.Scaler.ScalerBuilder
 
secondOfMinute(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by seconds.
selectField(String[], TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
Only keep the listed fields.
SelectField - Class in ai.djl.timeseries.transform.field
Select preset field names.
SelectField(String[]) - Constructor for class ai.djl.timeseries.transform.field.SelectField
Constructs a SelectField instance.
self() - Method in class ai.djl.timeseries.block.MeanScaler.Builder
self() - Method in class ai.djl.timeseries.block.NopScaler.Builder
self() - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
 
self() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
self() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
self() - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
 
self() - Method in class ai.djl.timeseries.distribution.NegativeBinomial.Builder
self() - Method in class ai.djl.timeseries.distribution.StudentT.Builder
self() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
self() - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
 
self() - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
 
setArgsDim(PairList<String, Integer>) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
Set the arguments dimensions of distribution.
setCardinalities(List<Integer>) - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
Set the cardinality for each categorical feature.
setCardinality(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the cardinality for static categorical feature.
setContextLength(int) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
Set the model prediction context length.
setCsvFormat(CSVFormat) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Set the CSV file format.
setDim(int) - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
Set the dim to scale.
setDistrArgs(NDList) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
Set the appropriate arguments for the probability distribution.
setDomainMap(Function<NDList, NDList>) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
Set the domain map function.
setEmbeddingDims(List<Integer>) - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
Set the number of dimensions to embed each categorical feature.
setEmbeddingSize(int) - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
Sets the size of the embeddings.
setField(FieldName, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
Replace the existing NDArray of FieldName to the value.
setField(FieldName, NDArray, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
Sets a field in the dictionary with the given value.
setField(String, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
Replaces the existing NDArray of FieldName to the value.
SetField - Class in ai.djl.timeseries.transform.field
Use the preset value for input field names.
SetField(FieldName, NDArray) - Constructor for class ai.djl.timeseries.transform.field.SetField
Constructs a SetField.
setForecastStartTime(LocalDateTime) - Method in class ai.djl.timeseries.TimeSeriesData
Set the time series forecasting time.
setFreq(String) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the prediction frequency.
setNumEmbeddings(int) - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
Sets the size of the dictionary of embeddings.
setPredictionLength(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
Set the prediction length.
setStartTime(LocalDateTime) - Method in class ai.djl.timeseries.TimeSeriesData
Set the time series start time.
setTransformation(List<TimeSeriesTransform>) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
Set the transformation for data preprocess.
Split - Class in ai.djl.timeseries.transform.split
this is a class use to split the time series data of TimeSeriesData.
START - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
startDate - Variable in class ai.djl.timeseries.Forecast
 
startTimeFeature - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
 
startTimeFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
 
StudentT - Class in ai.djl.timeseries.distribution
Student's t-test distribution.
StudentT.Builder - Class in ai.djl.timeseries.distribution
The builder to construct a NegativeBinomial.
StudentTOutput - Class in ai.djl.timeseries.distribution.output
StudentTOutput is a DistributionOutput for the Student's t-test distribution.
StudentTOutput() - Constructor for class ai.djl.timeseries.distribution.output.StudentTOutput
Construct a negative binomial output with two arguments, mu and sigma.

T

TARGET - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
TARGET_DIM_INDICATOR - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
 
TimeFeature - Class in ai.djl.timeseries.timefeature
this is a class to generate time feature by frequency.
timeFeaturesFromFreqStr(String) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Returns a list of time features that will be appropriate for the given frequency string.
TimeFeaturizer - Interface in ai.djl.timeseries.dataset
An interface that convert String to LocalDateTime as the start field of TimeSeriesData.
TimeFeaturizers - Class in ai.djl.timeseries.dataset
A utility class provides helper functions to create TimeFeaturizer.
TimeFeaturizers.ConstantTimeFeaturizer - Class in ai.djl.timeseries.dataset
A featurizer always return a constant date.
TimeFeaturizers.PatternTimeFeaturizer - Class in ai.djl.timeseries.dataset
A featurizer implemented for feature of date type.
TimeOffset - Class in ai.djl.timeseries.timefeature
This is a class use to get multiple and granularity from frequency string.
TimeOffset(String, int) - Constructor for class ai.djl.timeseries.timefeature.TimeOffset
Constructs a new TimeOffset instance.
TimeSeriesBuilder() - Constructor for class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
 
TimeSeriesData - Class in ai.djl.timeseries
TimeSeriesData is a DataEntry for managing time series data in preprocess.
TimeSeriesData(int) - Constructor for class ai.djl.timeseries.TimeSeriesData
Constructs an empty TimeSeriesData with the specified initial capacity.
TimeSeriesData(List<Pair<String, NDArray>>) - Constructor for class ai.djl.timeseries.TimeSeriesData
Constructs a TimeSeriesData containing the elements of the specified list of Pairs.
TimeSeriesData(List<String>, List<NDArray>) - Constructor for class ai.djl.timeseries.TimeSeriesData
Constructs a TimeSeriesData containing the elements of the specified keys and values.
TimeSeriesData(Map<String, NDArray>) - Constructor for class ai.djl.timeseries.TimeSeriesData
Constructs a TimeSeriesData containing the elements of the specified map.
TimeSeriesDataset - Class in ai.djl.timeseries.dataset
An abstract class for creating time series datasets.
TimeSeriesDataset(TimeSeriesDataset.TimeSeriesBuilder<?>) - Constructor for class ai.djl.timeseries.dataset.TimeSeriesDataset
 
TimeSeriesDataset.TimeSeriesBuilder<T extends TimeSeriesDataset.TimeSeriesBuilder<T>> - Class in ai.djl.timeseries.dataset
Used to build a TimeSeriesDataset.
TimeSeriesTransform - Interface in ai.djl.timeseries.transform
This interface is used for data transformation on the TimeSeriesData.
TimeSeriesTransform.IdentityTransform - Class in ai.djl.timeseries.transform
An identity transformation.
toFreqStr() - Method in class ai.djl.timeseries.timefeature.TimeOffset
Return the formatted frequency string.
toNDList() - Method in class ai.djl.timeseries.TimeSeriesData
Constructs a NDList containing the remaining NDArray for FieldName.
toOffset(String) - Static method in class ai.djl.timeseries.timefeature.TimeOffset
Return TimeOffset object from frequency string.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.convert.AsArray
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.convert.VstackFeatures
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddAgeFeature
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddObservedValuesIndicator
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddTimeFeature
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.RemoveFields
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.SelectField
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.SetField
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.split.InstanceSplit
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.TimeSeriesTransform.IdentityTransform
Transform process on TimeSeriesData.
transform(NDManager, TimeSeriesData, boolean) - Method in interface ai.djl.timeseries.transform.TimeSeriesTransform
Transform process on TimeSeriesData.
transformation - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
 
transformation - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset
 
TransformerTranslator - Class in ai.djl.timeseries.translator
The Translator for Transformer time series forecasting tasks.
TransformerTranslator(TransformerTranslator.Builder) - Constructor for class ai.djl.timeseries.translator.TransformerTranslator
TransformerTranslator.Builder - Class in ai.djl.timeseries.translator
The builder for Transformer translator.
TransformerTranslatorFactory - Class in ai.djl.timeseries.translator
A TranslatorFactory that creates a DeepARTranslator instance.
TransformerTranslatorFactory() - Constructor for class ai.djl.timeseries.translator.TransformerTranslatorFactory
 

U

unrollLaggedRnn(ParameterStore, NDList, boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
Applies the underlying RNN to the provided target data and covariates.
updateAccumulator(String, NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
updateAccumulators(String[], NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
useFeatDynamicReal - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
useFeatStaticCat - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 
useFeatStaticReal - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
 

V

validate() - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
Validates that the required arguments are set.
validate() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
Validate the builder to ensure it is correct.
validate() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
 
valueOf(String) - Static method in enum class ai.djl.timeseries.dataset.FieldName
Returns the enum constant of this class with the specified name.
values() - Static method in enum class ai.djl.timeseries.dataset.FieldName
Returns an array containing the constants of this enum class, in the order they are declared.
vstackFeatures(FieldName, FieldName[], boolean, boolean, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
Stacks fields together using NDArrays.concat(NDList).
vstackFeatures(FieldName, FieldName[], TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
Stacks fields together using NDArrays.concat(NDList).
VstackFeatures - Class in ai.djl.timeseries.transform.convert
Use the NDArrays.concat(NDList) to vstack data.
VstackFeatures(FieldName, FieldName[]) - Constructor for class ai.djl.timeseries.transform.convert.VstackFeatures
Constructs a VstackFeatures.
VstackFeatures(FieldName, FieldName[], boolean, boolean) - Constructor for class ai.djl.timeseries.transform.convert.VstackFeatures
Constructs a VstackFeatures.

W

weekOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
Computes feature by weeks of the year.
A B C D E F G H I K L M N O P Q R S T U V W 
All Classes and Interfaces|All Packages