Index
All Classes and Interfaces|All Packages
A
- add(FieldName, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
-
Adds a fieldName and value to the list.
- addAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
- addAgeFeature(NDManager, FieldName, FieldName, int, boolean, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Adds on 'age' feature to the
TimeSeriesData
. - addAgeFeature(NDManager, FieldName, FieldName, int, boolean, TimeSeriesData, boolean) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Adds on 'age' feature to the
TimeSeriesData
. - addAgeFeature(NDManager, FieldName, FieldName, int, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Adds on 'age' feature to the
TimeSeriesData
, set logScale = ture - AddAgeFeature - Class in ai.djl.timeseries.transform.feature
-
Add age feature through the prediction length.
- AddAgeFeature(FieldName, FieldName, int) - Constructor for class ai.djl.timeseries.transform.feature.AddAgeFeature
-
Constructs a
AddAgeFeature
. - AddAgeFeature(FieldName, FieldName, int, boolean) - Constructor for class ai.djl.timeseries.transform.feature.AddAgeFeature
-
Constructs a
AddAgeFeature
. - addFeature(String, FieldName) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Add a feature to the features set of the filed name.
- addFeature(String, FieldName, boolean) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Add a feature to the features set of the filed name with onehot encoding.
- addFieldFeature(FieldName, Feature) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Add the features to the correspongding
FieldName
. - addObservedValuesIndicator(NDManager, FieldName, FieldName, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Replaces missing values in a
NDArray
(NaNs) with a dummy value and adds an "observed"-indicator that is "1" when values are observed and "0" when values are missing. - AddObservedValuesIndicator - Class in ai.djl.timeseries.transform.feature
-
Add observed value for the target data.
- AddObservedValuesIndicator(FieldName, FieldName) - Constructor for class ai.djl.timeseries.transform.feature.AddObservedValuesIndicator
-
Constructs a
AddObservedValuesIndicator
. - addTimeFeature(NDManager, FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Adds a set of time features.
- addTimeFeature(NDManager, FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String, TimeSeriesData, boolean) - Static method in class ai.djl.timeseries.transform.feature.Feature
-
Adds a set of time features.
- AddTimeFeature - Class in ai.djl.timeseries.transform.feature
-
Add time feature by frequency.
- AddTimeFeature(FieldName, FieldName, FieldName, List<BiFunction<NDManager, List<LocalDateTime>, NDArray>>, int, String) - Constructor for class ai.djl.timeseries.transform.feature.AddTimeFeature
-
Constructs a
AddTimeFeature
. - AffineTransformed - Class in ai.djl.timeseries.distribution
-
Represents the distribution of an affinely transformed random variable.
- AffineTransformed(Distribution, NDArray, NDArray) - Constructor for class ai.djl.timeseries.distribution.AffineTransformed
-
Construct a new
AffineTransformed
- ai.djl.timeseries - package ai.djl.timeseries
-
Contains classes to support TimeSeries in djl.
- ai.djl.timeseries.block - package ai.djl.timeseries.block
-
Contains the basic block classes.
- ai.djl.timeseries.dataset - package ai.djl.timeseries.dataset
-
Contains the basic dataset classes.
- ai.djl.timeseries.distribution - package ai.djl.timeseries.distribution
-
Contains classes to support distribution in djl.
- ai.djl.timeseries.distribution.output - package ai.djl.timeseries.distribution.output
-
Contains classes to support construct distribution and project arguments.
- ai.djl.timeseries.evaluator - package ai.djl.timeseries.evaluator
-
Contains the evaluator classes.
- ai.djl.timeseries.model.deepar - package ai.djl.timeseries.model.deepar
-
Contains blocks for deepar models.
- ai.djl.timeseries.timefeature - package ai.djl.timeseries.timefeature
-
Contains utils to get time feature from prediction frequency.
- ai.djl.timeseries.transform - package ai.djl.timeseries.transform
-
Contains transform classes.
- ai.djl.timeseries.transform.convert - package ai.djl.timeseries.transform.convert
-
Contains transform for
TimeSeriesData
to convertNDArray
. - ai.djl.timeseries.transform.feature - package ai.djl.timeseries.transform.feature
-
Contains transform for
TimeSeriesData
to generate time feature. - ai.djl.timeseries.transform.field - package ai.djl.timeseries.transform.field
-
Contains transform for
TimeSeriesData
to CRUD name field. - ai.djl.timeseries.transform.split - package ai.djl.timeseries.transform.split
-
Contains transform for
TimeSeriesData
to split time feature for inference and train. - ai.djl.timeseries.translator - package ai.djl.timeseries.translator
-
Contains translators for TimeSeries models inference.
- ArgProj - Class in ai.djl.timeseries.distribution.output
-
A Block used to map the output of a dense layer to statistical parameters, like mean and standard deviation.
- ArgProj.Builder - Class in ai.djl.timeseries.distribution.output
-
The Builder to construct a
ArgProj
type ofBlock
. - argsDim - Variable in class ai.djl.timeseries.distribution.output.DistributionOutput
- asArray(FieldName, int, DataType, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
-
Converts the data type of
NDArray
and check its dimension. - asArray(FieldName, int, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
-
Converts the data type of
NDArray
and check its dimension. - AsArray - Class in ai.djl.timeseries.transform.convert
-
Convert the data type of
NDArray
and check its dimension. - AsArray(FieldName, int) - Constructor for class ai.djl.timeseries.transform.convert.AsArray
-
Constructs a
AsArray
. - AsArray(FieldName, int, DataType) - Constructor for class ai.djl.timeseries.transform.convert.AsArray
-
Constructs a
AsArray
. - availableSize() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- axis - Variable in class ai.djl.timeseries.transform.InstanceSampler
B
- BaseBuilder() - Constructor for class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- BaseTimeSeriesTranslator - Class in ai.djl.timeseries.translator
-
Built-in
Translator
that provides default TimeSeriesTranslator config process. - BaseTimeSeriesTranslator(BaseTimeSeriesTranslator.BaseBuilder<?>) - Constructor for class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
-
Constructs a new
TimeSeriesTranslator
instance with the provided builder. - BaseTimeSeriesTranslator.BaseBuilder<T extends BaseTimeSeriesTranslator.BaseBuilder<T>> - Class in ai.djl.timeseries.translator
-
A builder to extend for all classes extend the
BaseTimeSeriesTranslator
. - batchifier - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- build() - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
-
Return the constructed
FeatureEmbedder
. - build() - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
-
Return the constructed
FeatureEmbedding
. - build() - Method in class ai.djl.timeseries.block.MeanScaler.Builder
-
Return the constructed
MeanScaler
. - build() - Method in class ai.djl.timeseries.block.NopScaler.Builder
-
Return constructed
NOPScaler
. - build() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Build the new
CsvTimeSeriesDataset
. - build() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Build the new
M5Forecast
. - build() - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
-
Build a
Distribution
. - build() - Method in class ai.djl.timeseries.distribution.NegativeBinomial.Builder
-
Build a
Distribution
. - build() - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
-
Build a
ArgProj
block. - build() - Method in class ai.djl.timeseries.distribution.StudentT.Builder
-
Build a
Distribution
. - build() - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
-
Builds the translator.
- builder() - Static method in class ai.djl.timeseries.block.FeatureEmbedder
-
Return a builder to build an
FeatureEmbedder
. - builder() - Static method in class ai.djl.timeseries.block.FeatureEmbedding
-
Return a builder to build an
FeatureEmbedding
. - builder() - Static method in class ai.djl.timeseries.block.MeanScaler
-
Create a builder to build a
MeanScaler
. - builder() - Static method in class ai.djl.timeseries.block.NopScaler
-
Create a builder to build a
NopScaler
. - builder() - Static method in class ai.djl.timeseries.dataset.M5Forecast
-
Creates a builder to build a
M5Forecast
. - builder() - Static method in class ai.djl.timeseries.distribution.NegativeBinomial
-
Creates a builder to build a
NegativeBinomial
. - builder() - Static method in class ai.djl.timeseries.distribution.output.ArgProj
-
Creates a builder to build a
ArgProj
. - builder() - Static method in class ai.djl.timeseries.distribution.StudentT
-
Creates a builder to build a
NegativeBinomial
. - builder() - Static method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Create a builder to build a
DeepARTrainingNetwork
orDeepARPredictionNetwork
. - builder() - Static method in class ai.djl.timeseries.translator.DeepARTranslator
-
Creates a builder to build a
DeepARTranslator
. - builder() - Static method in class ai.djl.timeseries.translator.TransformerTranslator
-
Creates a builder to build a
TransformerTranslator
. - builder(Map<String, ?>) - Static method in class ai.djl.timeseries.translator.DeepARTranslator
-
Creates a builder to build a
DeepARTranslator
. - builder(Map<String, ?>) - Static method in class ai.djl.timeseries.translator.TransformerTranslator
-
Creates a builder to build a
TransformerTranslator
. - Builder() - Constructor for class ai.djl.timeseries.block.FeatureEmbedder.Builder
- Builder() - Constructor for class ai.djl.timeseries.block.FeatureEmbedding.Builder
- Builder() - Constructor for class ai.djl.timeseries.block.NopScaler.Builder
- Builder() - Constructor for class ai.djl.timeseries.distribution.NegativeBinomial.Builder
- Builder() - Constructor for class ai.djl.timeseries.distribution.output.ArgProj.Builder
- Builder() - Constructor for class ai.djl.timeseries.distribution.StudentT.Builder
- Builder() - Constructor for class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
- buildPredictionNetwork() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Build a
DeepARPredictionNetwork
block. - buildTrainingNetwork() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Build a
DeepARTrainingNetwork
block.
C
- call(NDArray) - Method in class ai.djl.timeseries.transform.ExpectedNumInstanceSampler
-
Call the sample process.
- call(NDArray) - Method in class ai.djl.timeseries.transform.InstanceSampler
-
Call the sample process.
- call(NDArray) - Method in class ai.djl.timeseries.transform.PredictionSplitSampler
-
Call the sample process.
- cardinality - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- configPostProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
- configPreProcess(Map<String, ?>) - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
- contextLength - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset
- contextLength - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
- contextLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- contextLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- contextLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
- Convert - Class in ai.djl.timeseries.transform.convert
-
A class used to convert the shape of
NDArray
inTimeSeriesData
. - copyDim(int) - Method in class ai.djl.timeseries.SampleForecast
-
Returns a new Forecast object with only the selected sub-dimension.
- createPredictionTransformation(NDManager) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Construct a prediction transformation of deepar model.
- createTrainingTransformation(NDManager) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Construct a training transformation of deepar model.
- CsvBuilder() - Constructor for class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- csvFormat - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- csvFormat - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- csvRecords - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- CsvTimeSeriesDataset - Class in ai.djl.timeseries.dataset
-
CsvTimeSeriesDataset
represents the dataset that store in a .csv file. - CsvTimeSeriesDataset(CsvTimeSeriesDataset.CsvBuilder<?>) - Constructor for class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- CsvTimeSeriesDataset.CsvBuilder<T extends CsvTimeSeriesDataset.CsvBuilder<T>> - Class in ai.djl.timeseries.dataset
-
Used to build a
CsvTimeSeriesDataset
. - csvUrl - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- csvUrl - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
D
- dataRequired() - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
- dayOfMonth(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by days fo the month.
- dayOfWeek(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by days of the week.
- dayOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by days of the year.
- DeepARNetwork - Class in ai.djl.timeseries.model.deepar
-
Implements the deepar model.
- DeepARNetwork.Builder - Class in ai.djl.timeseries.model.deepar
-
The builder to construct a
DeepARTrainingNetwork
orDeepARPredictionNetwork
. - DeepARPredictionNetwork - Class in ai.djl.timeseries.model.deepar
-
A deepar implements for prediction.
- DeepARTrainingNetwork - Class in ai.djl.timeseries.model.deepar
-
A deepar implements for training.
- DeepARTranslator - Class in ai.djl.timeseries.translator
-
The
Translator
for DeepAR time series forecasting tasks. - DeepARTranslator(DeepARTranslator.Builder) - Constructor for class ai.djl.timeseries.translator.DeepARTranslator
-
Constructs a new
DeepARTranslator
instance. - DeepARTranslator.Builder - Class in ai.djl.timeseries.translator
-
The builder for DeepAR translator.
- DeepARTranslatorFactory - Class in ai.djl.timeseries.translator
-
A
TranslatorFactory
that creates aDeepARTranslator
instance. - DeepARTranslatorFactory() - Constructor for class ai.djl.timeseries.translator.DeepARTranslatorFactory
- deFeaturize(float[]) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
- dim - Variable in class ai.djl.timeseries.block.Scaler
- dim - Variable in class ai.djl.timeseries.block.Scaler.ScalerBuilder
- distrArgs - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
- Distribution - Class in ai.djl.timeseries.distribution
-
An abstract class representing probability distribution.
- Distribution() - Constructor for class ai.djl.timeseries.distribution.Distribution
- Distribution.DistributionBuilder<T extends Distribution.DistributionBuilder<T>> - Class in ai.djl.timeseries.distribution
-
A builder to extend for all classes extend the
Distribution
. - distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
Return the associated
DistributionBuilder
, given the collection of constructor arguments and, optionally, a scale tensor. - distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
-
Return the associated
DistributionBuilder
, given the collection of constructor arguments and, optionally, a scale tensor. - distributionBuilder() - Method in class ai.djl.timeseries.distribution.output.StudentTOutput
-
Return the associated
DistributionBuilder
, given the collection of constructor arguments and, optionally, a scale tensor. - DistributionBuilder() - Constructor for class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
- DistributionLoss - Class in ai.djl.timeseries.distribution
-
DistributionLoss
calculates loss for a given distribution. - DistributionLoss(String, DistributionOutput) - Constructor for class ai.djl.timeseries.distribution.DistributionLoss
-
Calculates Distribution Loss between the label and distribution.
- DistributionOutput - Class in ai.djl.timeseries.distribution.output
-
A class to construct a distribution given the output of a network.
- DistributionOutput() - Constructor for class ai.djl.timeseries.distribution.output.DistributionOutput
- distrOutput - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
Convert arguments to the right shape and domain.
- domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
-
Convert arguments to the right shape and domain.
- domainMap(NDList) - Method in class ai.djl.timeseries.distribution.output.StudentTOutput
-
Convert arguments to the right shape and domain.
E
- embedder - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- embeddingDimension - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- equals(Object) - Method in class ai.djl.timeseries.TimeSeriesData
-
*
- evaluate(NDList, NDList) - Method in class ai.djl.timeseries.distribution.DistributionLoss
- evaluate(NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
- evaluateHelper(NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
- ExpectedNumInstanceSampler - Class in ai.djl.timeseries.transform
-
Keeps track of the average time series length and adjusts the probability per time point such that on average `num_instances` training examples are generated per time series.
- ExpectedNumInstanceSampler(int, int, int, double) - Constructor for class ai.djl.timeseries.transform.ExpectedNumInstanceSampler
-
Construct a new instance of
ExpectedNumInstanceSampler
.
F
- FEAT_AGE - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_CONST - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_DYNAMIC - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_DYNAMIC_CAT - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_DYNAMIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_DYNAMIC_REAL_LEGACY - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_STATIC_CAT - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_STATIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- FEAT_TIME - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- Feature - Class in ai.djl.timeseries.transform.feature
-
this is a class use to add feature in
TimeSeriesData
. - FeatureEmbedder - Class in ai.djl.timeseries.block
-
Embed a sequence of categorical features.
- FeatureEmbedder.Builder - Class in ai.djl.timeseries.block
-
The builder to construct a
FeatureEmbedder
type ofBlock
. - FeatureEmbedding - Class in ai.djl.timeseries.block
-
An implement of nn.embedding.
- FeatureEmbedding.Builder - Class in ai.djl.timeseries.block
-
The builder to construct a
FeatureEmbedding
type ofBlock
. - featurize(DynamicBuffer, String) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
- featurize(String) - Method in interface ai.djl.timeseries.dataset.TimeFeaturizer
-
Return the parsed time data.
- featurize(String) - Method in class ai.djl.timeseries.dataset.TimeFeaturizers.ConstantTimeFeaturizer
-
Return the parsed time data.
- featurize(String) - Method in class ai.djl.timeseries.dataset.TimeFeaturizers.PatternTimeFeaturizer
-
Return the parsed time data.
- Field - Class in ai.djl.timeseries.transform.field
-
A utility class that used to operate field name in
TimeSeriesData
. - fieldFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- fieldFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- FieldName - Enum Class in ai.djl.timeseries.dataset
-
Represents the name field of elements in a
TimeSeriesData
as an enum. - Forecast - Class in ai.djl.timeseries
-
An abstract class representing the forecast results for the time series data.
- Forecast(LocalDateTime, int, String) - Constructor for class ai.djl.timeseries.Forecast
-
Constructs a
Forecast
instance. - FORECAST_START - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.FeatureEmbedder
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.FeatureEmbedding
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.MeanScaler
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.block.NopScaler
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.distribution.output.ArgProj
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.model.deepar.DeepARPredictionNetwork
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.timeseries.model.deepar.DeepARTrainingNetwork
- freq - Variable in class ai.djl.timeseries.Forecast
- freq - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- freq - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- freq - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
- freq() - Method in class ai.djl.timeseries.Forecast
-
Returns the prediction frequency like "D", "H"....
G
- get(NDManager, long) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset
-
TimeSeriesDataset
override the get function so that it can preprocess the feature data as timeseries package way. - get(FieldName) - Method in class ai.djl.timeseries.TimeSeriesData
-
Returns the value for the fieldName.
- getAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
- getArgsArray() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
Return an array containing all the argument names.
- getArgsProj() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
Return the corresponding projection block based on the arguments dimension of different distributions.
- getArgsProj(String) - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
Return the corresponding projection block based on the arguments dimension of different ditributions.
- getAvailableFeatures() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Returns the available features of this dataset.
- getBatchifier() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
- getBounds(NDArray) - Method in class ai.djl.timeseries.transform.InstanceSampler
-
Returns the sampled indices bounds.
- getCardinality() - Method in class ai.djl.timeseries.dataset.M5Forecast
-
Return the cardinality of the dataset.
- getCell(long, String) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
-
Returns a cell in the dataset.
- getConstantTimeFeaturizer(LocalDateTime) - Static method in class ai.djl.timeseries.dataset.TimeFeaturizers
-
Construct a
TimeFeaturizers.ConstantTimeFeaturizer
. - getContextLength() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Return the context length.
- getForecastStartTime() - Method in class ai.djl.timeseries.TimeSeriesData
-
Returns the time series forecasting time.
- getHistoryLength() - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Return the history length.
- getLagsForFreq(String) - Static method in class ai.djl.timeseries.timefeature.Lag
-
Generates a list of lags that are appropriate for the given frequency string.
- getLagsForFreq(String, int) - Static method in class ai.djl.timeseries.timefeature.Lag
-
Generates a list of lags that are appropriate for the given frequency string.
- getMultipleOfTimeOffset() - Method in class ai.djl.timeseries.timefeature.TimeOffset
-
Return the multiple of
TimeOffset
. - getName() - Method in class ai.djl.timeseries.timefeature.TimeOffset
-
Return the granularity name of
TimeOffset
. - getNumSamples() - Method in class ai.djl.timeseries.SampleForecast
-
Returns the number of samples representing the forecast.
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.FeatureEmbedder
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.FeatureEmbedding
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.block.Scaler
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.distribution.output.ArgProj
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.model.deepar.DeepARPredictionNetwork
- getOutputShapes(Shape[]) - Method in class ai.djl.timeseries.model.deepar.DeepARTrainingNetwork
- getPatternTimeFeaturizer(String) - Static method in class ai.djl.timeseries.dataset.TimeFeaturizers
-
Construct a
TimeFeaturizers.PatternTimeFeaturizer
. - getPredictionLength() - Method in class ai.djl.timeseries.Forecast
-
Returns the time length of forecast.
- getRowFeatures(NDManager, long, List<Feature>) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
-
Returns the designated features (either data or label features) from a row.
- getSortedSamples() - Method in class ai.djl.timeseries.SampleForecast
-
Returns the sorted sample array.
- getStartTime() - Method in class ai.djl.timeseries.TimeSeriesData
-
Returns the time series start time.
- getStartTime(long) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
-
Return the prediction start time for the given index.
- getSupportedTypes() - Method in class ai.djl.timeseries.translator.DeepARTranslatorFactory
- getSupportedTypes() - Method in class ai.djl.timeseries.translator.TransformerTranslatorFactory
- getTimeSeriesData(NDManager, long) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
-
Return the
TimeSeriesData
for the given index from theTimeSeriesDataset
. - getTimeSeriesData(NDManager, long) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset
-
Return the
TimeSeriesData
for the given index from theTimeSeriesDataset
. - getValueInSupport() - Method in class ai.djl.timeseries.distribution.output.DistributionOutput
-
A float that will have a valid numeric value when computing the log-loss of the corresponding distribution.
H
- hashCode() - Method in class ai.djl.timeseries.TimeSeriesData
-
*
- historyLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- hourOfDay(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by hours.
I
- IdentityTransform() - Constructor for class ai.djl.timeseries.transform.TimeSeriesTransform.IdentityTransform
- identityTransformation() - Static method in interface ai.djl.timeseries.transform.TimeSeriesTransform
-
Construct a list of
TimeSeriesTransform
that performs identity function. - initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.block.FeatureEmbedder
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.distribution.output.ArgProj
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
- InstanceSampler - Class in ai.djl.timeseries.transform
-
An InstanceSampler is called with the time series ``ts``, and returns a set of indices at which training instances will be generated.
- InstanceSampler(int, int, int) - Constructor for class ai.djl.timeseries.transform.InstanceSampler
-
Constructs a new instance of
InstanceSampler
. - instanceSplit(NDManager, FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, int, boolean, FieldName[], float, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.split.Split
-
Selects training instances, by slicing the target and other time series like arrays at random points in training mode or at the last time point in prediction mode.
- instanceSplit(NDManager, FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, FieldName[], float, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.split.Split
-
Selects training instances, by slicing the target and other time series like arrays at random points in training mode or at the last time point in prediction mode.
- InstanceSplit - Class in ai.djl.timeseries.transform.split
-
Use the
InstanceSampler
to split the time series data into past and future part. - InstanceSplit(FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, int, boolean, FieldName[], float) - Constructor for class ai.djl.timeseries.transform.split.InstanceSplit
-
Constructs a
InstanceSplit
. - InstanceSplit(FieldName, FieldName, FieldName, FieldName, InstanceSampler, int, int, FieldName[], float) - Constructor for class ai.djl.timeseries.transform.split.InstanceSplit
-
Constructs a
InstanceSplit
. - IS_PAD - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- ITEM_ID - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
K
- keepDim - Variable in class ai.djl.timeseries.block.Scaler
- keepDim - Variable in class ai.djl.timeseries.block.Scaler.ScalerBuilder
L
- Lag - Class in ai.djl.timeseries.timefeature
-
This class contains static method for get lags from frequency.
- laggedSequenceValues(List<Integer>, NDArray, NDArray) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Construct an
NDArray
of lagged values from a given sequence. - lagsSeq - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- loc - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
- logProb(NDArray) - Method in class ai.djl.timeseries.distribution.AffineTransformed
-
Compute the log of the probability density/mass function evaluated at target.
- logProb(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution
-
Compute the log of the probability density/mass function evaluated at target.
- logProb(NDArray) - Method in class ai.djl.timeseries.distribution.NegativeBinomial
-
Compute the log of the probability density/mass function evaluated at target.
- logProb(NDArray) - Method in class ai.djl.timeseries.distribution.StudentT
-
Compute the log of the probability density/mass function evaluated at target.
M
- M5Forecast - Class in ai.djl.timeseries.dataset
-
M5 Forecasting - Accuracy from https://www.kaggle.com/competitions/m5-forecasting-accuracy
- M5Forecast(M5Forecast.Builder) - Constructor for class ai.djl.timeseries.dataset.M5Forecast
-
Creates a new instance of
M5Forecast
with the given necessary configurations. - M5Forecast.Builder - Class in ai.djl.timeseries.dataset
-
Used to build a
M5Forecast
. - mean() - Method in class ai.djl.timeseries.distribution.AffineTransformed
-
Return the mean of the distribution.
- mean() - Method in class ai.djl.timeseries.distribution.Distribution
-
Return the mean of the distribution.
- mean() - Method in class ai.djl.timeseries.distribution.NegativeBinomial
-
Return the mean of the distribution.
- mean() - Method in class ai.djl.timeseries.distribution.StudentT
-
Return the mean of the distribution.
- mean() - Method in class ai.djl.timeseries.Forecast
-
Computes and returns the forecast mean.
- mean() - Method in class ai.djl.timeseries.SampleForecast
-
Computes and returns the forecast mean.
- MeanScaler - Class in ai.djl.timeseries.block
-
A class computes a scaling factor as the weighted average absolute value along dimension
dim
, and scales the data accordingly. - MeanScaler.Builder - Class in ai.djl.timeseries.block
-
The builder to construct a
MeanScaler
. - median() - Method in class ai.djl.timeseries.Forecast
-
Computes the median of forecast.
- minFuture - Variable in class ai.djl.timeseries.transform.InstanceSampler
- minPast - Variable in class ai.djl.timeseries.transform.InstanceSampler
- minuteOfHour(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by minutes.
- monthOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by months of the year.
N
- NegativeBinomial - Class in ai.djl.timeseries.distribution
-
Negative binomial distribution.
- NegativeBinomial.Builder - Class in ai.djl.timeseries.distribution
-
The builder to construct a
NegativeBinomial
. - NegativeBinomialOutput - Class in ai.djl.timeseries.distribution.output
-
NegativeBinomialOutput
is aDistributionOutput
for the negative binomial distribution. - NegativeBinomialOutput() - Constructor for class ai.djl.timeseries.distribution.output.NegativeBinomialOutput
-
Construct a negative binomial output with two arguments,
total_count
andlogits
. - newInstance(Class<I>, Class<O>, Model, Map<String, ?>) - Method in class ai.djl.timeseries.translator.DeepARTranslatorFactory
- newInstance(Class<I>, Class<O>, Model, Map<String, ?>) - Method in class ai.djl.timeseries.translator.TransformerTranslatorFactory
- newTestSplitSampler() - Static method in class ai.djl.timeseries.transform.PredictionSplitSampler
-
Creates a new instance
PredictionSplitSampler
for test. - newValidationSplitSampler() - Static method in class ai.djl.timeseries.transform.PredictionSplitSampler
-
Creates a new instance
PredictionSplitSampler
for validation. - NopScaler - Class in ai.djl.timeseries.block
-
A class assigns a scaling factor equal to 1 along dimension
dim
, and therefore applies no scaling to the input data. - NopScaler.Builder - Class in ai.djl.timeseries.block
-
The builder to construct a
NopScaler
. - numParallelSamples - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
O
- OBSERVED_VALUES - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- optArtifactId(String) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Sets the optional artifactId.
- optBachifier(Batchifier) - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
-
Sets the
Batchifier
for theTranslator
. - optContextLength(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional context length.
- optCsvFile(Path) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Set the optional CSV file path.
- optCsvUrl(String) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Set the optional CSV file URL.
- optDistrOutput(DistributionOutput) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional
DistributionOutput
defaultStudentTOutput
. - optDropRate(float) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional number of rnn drop rate.
- optEmbeddingDimension(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional embedding dimension.
- optGroupId(String) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Sets optional groupId.
- optHiddenSize(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional number of rnn hidden size.
- optKeepDim(boolean) - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
-
Set whether to keep dim.
- optLagsSeq(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional lags sequence, default generate from frequency.
- optLoc(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
-
Set the affine location of the probability.
- optMinimumScale(float) - Method in class ai.djl.timeseries.block.MeanScaler.Builder
-
Sets the minimum scalar of the data.
- optNumLayers(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional number of rnn layers.
- optNumParallelSamples(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the optional number parallel samples.
- optPrefix(String) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
-
Set the block name prefix.
- optRepository(Repository) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Sets the optional repository.
- optScale(NDArray) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
-
Set the affine scale for the probability distribution.
- optUsage(Dataset.Usage) - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
-
Sets the optional usage.
- optUseFeatDynamicReal(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set whether to use dynamic real feature.
- optUseFeatStaticCat(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set whether to use static categorical feature.
- optUseFeatStaticReal(boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set whether to use static real feature.
P
- paramProj - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- PAST_FEAT_DYNAMIC - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- PAST_FEAT_DYNAMIC_REAL - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- predictionLength - Variable in class ai.djl.timeseries.Forecast
- predictionLength - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- predictionLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- predictionLength - Variable in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator
- PredictionSplitSampler - Class in ai.djl.timeseries.transform
-
Sampler used for prediction.
- PredictionSplitSampler(int, int, int, boolean) - Constructor for class ai.djl.timeseries.transform.PredictionSplitSampler
-
Constructs a new instance of
PredictionSplitSampler
. - prepare(Progress) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- prepare(Progress) - Method in class ai.djl.timeseries.dataset.M5Forecast
- prepareFeaturizers() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
-
Prepares the
PreparedFeaturizer
s. - processInput(TranslatorContext, TimeSeriesData) - Method in class ai.djl.timeseries.translator.DeepARTranslator
- processInput(TranslatorContext, TimeSeriesData) - Method in class ai.djl.timeseries.translator.TransformerTranslator
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.timeseries.translator.DeepARTranslator
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.timeseries.translator.TransformerTranslator
Q
- quantile(float) - Method in class ai.djl.timeseries.Forecast
-
Computes a quantile from the predicted distribution.
- quantile(float) - Method in class ai.djl.timeseries.SampleForecast
-
Computes a quantile from the predicted distribution.
- quantile(String) - Method in class ai.djl.timeseries.Forecast
-
Computes a quantile from the predicted distribution.
R
- remove(FieldName) - Method in class ai.djl.timeseries.TimeSeriesData
-
Removes the key-value pair for the
FieldName
. - removeFields(List<FieldName>, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
-
Remove fields names if present.
- RemoveFields - Class in ai.djl.timeseries.transform.field
-
Remove the field names.
- RemoveFields(List<FieldName>) - Constructor for class ai.djl.timeseries.transform.field.RemoveFields
-
Constructs a
RemoveFields
instance. - resetAccumulator(String) - Method in class ai.djl.timeseries.evaluator.Rmsse
- Rmsse - Class in ai.djl.timeseries.evaluator
-
A class used to calculate Root Mean Squared Scaled Error.
- Rmsse(DistributionOutput) - Constructor for class ai.djl.timeseries.evaluator.Rmsse
-
Creates an evaluator that computes Root Mean Squared Scaled Error across axis 1.
- Rmsse(String, int, DistributionOutput) - Constructor for class ai.djl.timeseries.evaluator.Rmsse
-
Creates an evaluator that computes Root Mean Squared Scaled Error across axis 1.
- rnn - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
S
- sample() - Method in class ai.djl.timeseries.distribution.Distribution
-
Draw samples from the distribution.
- sample(int) - Method in class ai.djl.timeseries.distribution.AffineTransformed
-
Draw samples from the distribution.
- sample(int) - Method in class ai.djl.timeseries.distribution.Distribution
-
Draw samples from the distribution.
- sample(int) - Method in class ai.djl.timeseries.distribution.NegativeBinomial
-
Draw samples from the distribution.
- sample(int) - Method in class ai.djl.timeseries.distribution.StudentT
-
Draw samples from the distribution.
- SampleForecast - Class in ai.djl.timeseries
-
A
Forecast
object, where the predicted distribution is represented internally as samples. - SampleForecast(NDArray, LocalDateTime, String) - Constructor for class ai.djl.timeseries.SampleForecast
-
Constructs a
SampleForeCast
. - scale - Variable in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
- scaler - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- Scaler - Class in ai.djl.timeseries.block
-
An abstract class used to scale data.
- Scaler.ScalerBuilder<T extends Scaler.ScalerBuilder<T>> - Class in ai.djl.timeseries.block
-
A builder to extend for all classes extend the
Scaler
. - ScalerBuilder() - Constructor for class ai.djl.timeseries.block.Scaler.ScalerBuilder
- secondOfMinute(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by seconds.
- selectField(String[], TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
-
Only keep the listed fields.
- SelectField - Class in ai.djl.timeseries.transform.field
-
Select preset field names.
- SelectField(String[]) - Constructor for class ai.djl.timeseries.transform.field.SelectField
-
Constructs a
SelectField
instance. - self() - Method in class ai.djl.timeseries.block.MeanScaler.Builder
- self() - Method in class ai.djl.timeseries.block.NopScaler.Builder
- self() - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
- self() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- self() - Method in class ai.djl.timeseries.dataset.M5Forecast.Builder
- self() - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
- self() - Method in class ai.djl.timeseries.distribution.NegativeBinomial.Builder
- self() - Method in class ai.djl.timeseries.distribution.StudentT.Builder
- self() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- self() - Method in class ai.djl.timeseries.translator.DeepARTranslator.Builder
- self() - Method in class ai.djl.timeseries.translator.TransformerTranslator.Builder
- setArgsDim(PairList<String, Integer>) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
-
Set the arguments dimensions of distribution.
- setCardinalities(List<Integer>) - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
-
Set the cardinality for each categorical feature.
- setCardinality(List<Integer>) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the cardinality for static categorical feature.
- setContextLength(int) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
-
Set the model prediction context length.
- setCsvFormat(CSVFormat) - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Set the CSV file format.
- setDim(int) - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
-
Set the dim to scale.
- setDistrArgs(NDList) - Method in class ai.djl.timeseries.distribution.Distribution.DistributionBuilder
-
Set the appropriate arguments for the probability distribution.
- setDomainMap(Function<NDList, NDList>) - Method in class ai.djl.timeseries.distribution.output.ArgProj.Builder
-
Set the domain map function.
- setEmbeddingDims(List<Integer>) - Method in class ai.djl.timeseries.block.FeatureEmbedder.Builder
-
Set the number of dimensions to embed each categorical feature.
- setEmbeddingSize(int) - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
-
Sets the size of the embeddings.
- setField(FieldName, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
-
Replace the existing
NDArray
ofFieldName
to the value. - setField(FieldName, NDArray, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.field.Field
-
Sets a field in the dictionary with the given value.
- setField(String, NDArray) - Method in class ai.djl.timeseries.TimeSeriesData
-
Replaces the existing
NDArray
ofFieldName
to the value. - SetField - Class in ai.djl.timeseries.transform.field
-
Use the preset value for input field names.
- SetField(FieldName, NDArray) - Constructor for class ai.djl.timeseries.transform.field.SetField
-
Constructs a
SetField
. - setForecastStartTime(LocalDateTime) - Method in class ai.djl.timeseries.TimeSeriesData
-
Set the time series forecasting time.
- setFreq(String) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the prediction frequency.
- setNumEmbeddings(int) - Method in class ai.djl.timeseries.block.FeatureEmbedding.Builder
-
Sets the size of the dictionary of embeddings.
- setPredictionLength(int) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork.Builder
-
Set the prediction length.
- setStartTime(LocalDateTime) - Method in class ai.djl.timeseries.TimeSeriesData
-
Set the time series start time.
- setTransformation(List<TimeSeriesTransform>) - Method in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
-
Set the transformation for data preprocess.
- Split - Class in ai.djl.timeseries.transform.split
-
this is a class use to split the time series data of
TimeSeriesData
. - START - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- startDate - Variable in class ai.djl.timeseries.Forecast
- startTimeFeature - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset
- startTimeFeatures - Variable in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
- StudentT - Class in ai.djl.timeseries.distribution
-
Student's t-test distribution.
- StudentT.Builder - Class in ai.djl.timeseries.distribution
-
The builder to construct a
NegativeBinomial
. - StudentTOutput - Class in ai.djl.timeseries.distribution.output
-
StudentTOutput
is aDistributionOutput
for the Student's t-test distribution. - StudentTOutput() - Constructor for class ai.djl.timeseries.distribution.output.StudentTOutput
-
Construct a negative binomial output with two arguments,
mu
andsigma
.
T
- TARGET - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- TARGET_DIM_INDICATOR - Enum constant in enum class ai.djl.timeseries.dataset.FieldName
- TimeFeature - Class in ai.djl.timeseries.timefeature
-
this is a class to generate time feature by frequency.
- timeFeaturesFromFreqStr(String) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Returns a list of time features that will be appropriate for the given frequency string.
- TimeFeaturizer - Interface in ai.djl.timeseries.dataset
-
An interface that convert String to
LocalDateTime
as the start field ofTimeSeriesData
. - TimeFeaturizers - Class in ai.djl.timeseries.dataset
-
A utility class provides helper functions to create
TimeFeaturizer
. - TimeFeaturizers.ConstantTimeFeaturizer - Class in ai.djl.timeseries.dataset
-
A featurizer always return a constant date.
- TimeFeaturizers.PatternTimeFeaturizer - Class in ai.djl.timeseries.dataset
-
A featurizer implemented for feature of date type.
- TimeOffset - Class in ai.djl.timeseries.timefeature
-
This is a class use to get multiple and granularity from frequency string.
- TimeOffset(String, int) - Constructor for class ai.djl.timeseries.timefeature.TimeOffset
-
Constructs a new
TimeOffset
instance. - TimeSeriesBuilder() - Constructor for class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
- TimeSeriesData - Class in ai.djl.timeseries
-
TimeSeriesData
is a DataEntry for managing time series data in preprocess. - TimeSeriesData(int) - Constructor for class ai.djl.timeseries.TimeSeriesData
-
Constructs an empty
TimeSeriesData
with the specified initial capacity. - TimeSeriesData(List<Pair<String, NDArray>>) - Constructor for class ai.djl.timeseries.TimeSeriesData
-
Constructs a
TimeSeriesData
containing the elements of the specified list of Pairs. - TimeSeriesData(List<String>, List<NDArray>) - Constructor for class ai.djl.timeseries.TimeSeriesData
-
Constructs a
TimeSeriesData
containing the elements of the specified keys and values. - TimeSeriesData(Map<String, NDArray>) - Constructor for class ai.djl.timeseries.TimeSeriesData
-
Constructs a
TimeSeriesData
containing the elements of the specified map. - TimeSeriesDataset - Class in ai.djl.timeseries.dataset
-
An abstract class for creating time series datasets.
- TimeSeriesDataset(TimeSeriesDataset.TimeSeriesBuilder<?>) - Constructor for class ai.djl.timeseries.dataset.TimeSeriesDataset
- TimeSeriesDataset.TimeSeriesBuilder<T extends TimeSeriesDataset.TimeSeriesBuilder<T>> - Class in ai.djl.timeseries.dataset
-
Used to build a
TimeSeriesDataset
. - TimeSeriesTransform - Interface in ai.djl.timeseries.transform
-
This interface is used for data transformation on the
TimeSeriesData
. - TimeSeriesTransform.IdentityTransform - Class in ai.djl.timeseries.transform
-
An identity transformation.
- toFreqStr() - Method in class ai.djl.timeseries.timefeature.TimeOffset
-
Return the formatted frequency string.
- toNDList() - Method in class ai.djl.timeseries.TimeSeriesData
- toOffset(String) - Static method in class ai.djl.timeseries.timefeature.TimeOffset
-
Return
TimeOffset
object from frequency string. - transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.convert.AsArray
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.convert.VstackFeatures
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddAgeFeature
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddObservedValuesIndicator
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.feature.AddTimeFeature
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.RemoveFields
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.SelectField
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.field.SetField
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.split.InstanceSplit
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in class ai.djl.timeseries.transform.TimeSeriesTransform.IdentityTransform
-
Transform process on TimeSeriesData.
- transform(NDManager, TimeSeriesData, boolean) - Method in interface ai.djl.timeseries.transform.TimeSeriesTransform
-
Transform process on TimeSeriesData.
- transformation - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset.TimeSeriesBuilder
- transformation - Variable in class ai.djl.timeseries.dataset.TimeSeriesDataset
- TransformerTranslator - Class in ai.djl.timeseries.translator
-
The
Translator
for Transformer time series forecasting tasks. - TransformerTranslator(TransformerTranslator.Builder) - Constructor for class ai.djl.timeseries.translator.TransformerTranslator
-
Constructs a
TransformerTranslator
withTransformerTranslator.Builder
. - TransformerTranslator.Builder - Class in ai.djl.timeseries.translator
-
The builder for Transformer translator.
- TransformerTranslatorFactory - Class in ai.djl.timeseries.translator
-
A
TranslatorFactory
that creates aDeepARTranslator
instance. - TransformerTranslatorFactory() - Constructor for class ai.djl.timeseries.translator.TransformerTranslatorFactory
U
- unrollLaggedRnn(ParameterStore, NDList, boolean) - Method in class ai.djl.timeseries.model.deepar.DeepARNetwork
-
Applies the underlying RNN to the provided target data and covariates.
- updateAccumulator(String, NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
- updateAccumulators(String[], NDList, NDList) - Method in class ai.djl.timeseries.evaluator.Rmsse
- useFeatDynamicReal - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- useFeatStaticCat - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
- useFeatStaticReal - Variable in class ai.djl.timeseries.model.deepar.DeepARNetwork
V
- validate() - Method in class ai.djl.timeseries.block.Scaler.ScalerBuilder
-
Validates that the required arguments are set.
- validate() - Method in class ai.djl.timeseries.dataset.CsvTimeSeriesDataset.CsvBuilder
-
Validate the builder to ensure it is correct.
- validate() - Method in class ai.djl.timeseries.translator.BaseTimeSeriesTranslator.BaseBuilder
- valueOf(String) - Static method in enum class ai.djl.timeseries.dataset.FieldName
-
Returns the enum constant of this class with the specified name.
- values() - Static method in enum class ai.djl.timeseries.dataset.FieldName
-
Returns an array containing the constants of this enum class, in the order they are declared.
- vstackFeatures(FieldName, FieldName[], boolean, boolean, TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
-
Stacks fields together using
NDArrays.concat(NDList)
. - vstackFeatures(FieldName, FieldName[], TimeSeriesData) - Static method in class ai.djl.timeseries.transform.convert.Convert
-
Stacks fields together using
NDArrays.concat(NDList)
. - VstackFeatures - Class in ai.djl.timeseries.transform.convert
-
Use the
NDArrays.concat(NDList)
to vstack data. - VstackFeatures(FieldName, FieldName[]) - Constructor for class ai.djl.timeseries.transform.convert.VstackFeatures
-
Constructs a
VstackFeatures
. - VstackFeatures(FieldName, FieldName[], boolean, boolean) - Constructor for class ai.djl.timeseries.transform.convert.VstackFeatures
-
Constructs a
VstackFeatures
.
W
- weekOfYear(NDManager, List<LocalDateTime>) - Static method in class ai.djl.timeseries.timefeature.TimeFeature
-
Computes feature by weeks of the year.
All Classes and Interfaces|All Packages