Class NDArrayAdapter
- java.lang.Object
-
- ai.djl.ndarray.NDArrayAdapter
-
- All Implemented Interfaces:
BytesSupplier
,NDArray
,NDResource
,java.lang.AutoCloseable
public abstract class NDArrayAdapter extends java.lang.Object implements NDArray
A base implementation of theNDArray
that does nothing. This can be used for overriding the NDArray with only part of the interface implemented.This interface should only be used for the NDArray implementations that do not plan to implement a large portion of the interface. For the ones that do, they should directly implement
NDArray
so that the unsupported operations are better highlighted in the code.
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
NDArrayAdapter(NDManager manager, NDManager alternativeManager, Shape shape, DataType dataType, java.lang.String uid)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description NDArray
abs()
Returns the absolute value of thisNDArray
element-wise.NDArray
acos()
Returns the inverse trigonometric cosine of thisNDArray
element-wise.NDArray
acosh()
Returns the inverse hyperbolic cosine of thisNDArray
element-wise.NDArray
add(NDArray other)
Adds otherNDArray
s to thisNDArray
element-wise.NDArray
add(java.lang.Number n)
Adds a number to thisNDArray
element-wise.NDArray
addi(NDArray other)
Adds otherNDArray
s to thisNDArray
element-wise in place.NDArray
addi(java.lang.Number n)
Adds a number to thisNDArray
element-wise in place.NDArray
argMax()
Returns the indices of the maximum values into the flattenedNDArray
.NDArray
argMax(int axis)
Returns the indices of the maximum values along given axis.NDArray
argMin()
Returns the indices of the minimum values into the flattenedNDArray
.NDArray
argMin(int axis)
Returns the indices of the minimum values along given axis.NDArray
argSort(int axis, boolean ascending)
Returns the indices that would sort thisNDArray
given the axis.NDArray
asin()
Returns the inverse trigonometric sine of thisNDArray
element-wise.NDArray
asinh()
Returns the inverse hyperbolic sine of thisNDArray
element-wise.NDArray
atan()
Returns the inverse trigonometric tangent of thisNDArray
element-wise.NDArray
atanh()
Returns the inverse hyperbolic tangent of thisNDArray
element-wise.void
attach(NDManager manager)
Attaches thisNDResource
to the specifiedNDManager
.NDArray
batchDot(NDArray other)
Batchwise product of thisNDArray
and the otherNDArray
.NDArray
booleanMask(NDArray index, int axis)
Returns portion of thisNDArray
given the index booleanNDArray
along given axis.NDArray
broadcast(Shape shape)
Broadcasts thisNDArray
to be the given shape.NDArray
cbrt()
Returns the cube-root of thisNDArray
element-wise.NDArray
ceil()
Returns the ceiling of thisNDArray
element-wise.NDArray
clip(java.lang.Number min, java.lang.Number max)
Clips (limit) the values in thisNDArray
.void
close()
boolean
contentEquals(NDArray other)
boolean
contentEquals(java.lang.Number number)
Returnstrue
if all elements in thisNDArray
are equal to theNumber
.void
copyTo(NDArray array)
Deep-copies the currentNDArray
to the one passed in.NDArray
cos()
Returns the trigonometric cosine of thisNDArray
element-wise.NDArray
cosh()
Returns the hyperbolic cosine of thisNDArray
element-wise.NDArray
cumProd(int axis)
Returns the cumulative product of elements of input in the dimension dim.NDArray
cumProd(int axis, DataType dataType)
Returns the cumulative product of elements of input in the dimension dim.NDArray
cumSum()
Returns the cumulative sum of the elements in the flattenedNDArray
.NDArray
cumSum(int axis)
Return the cumulative sum of the elements along a given axis.NDArray
div(NDArray other)
Divides thisNDArray
by the otherNDArray
element-wise.NDArray
div(java.lang.Number n)
Divides thisNDArray
by a number element-wise.NDArray
divi(NDArray other)
Divides thisNDArray
by the otherNDArray
element-wise in place.NDArray
divi(java.lang.Number n)
Divides thisNDArray
by a number element-wise in place.NDArray
dot(NDArray other)
Dot product of thisNDArray
and the otherNDArray
.NDArray
eq(NDArray other)
Returns the booleanNDArray
for element-wise "Equals" comparison.NDArray
eq(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Equals" comparison.NDArray
erfinv()
Returns element-wise inverse gauss error function of theNDArray
.NDArray
exp()
Returns the exponential value of thisNDArray
element-wise.NDArray
expandDims(int axis)
Expands theShape
of aNDArray
.NDArray
flatten()
Flattens thisNDArray
into a 1-DNDArray
in row-major order.NDArray
flip(int... axes)
Returns the reverse order of elements in an array along the given axis.NDArray
floor()
Returns the floor of thisNDArray
element-wise.NDArray
gammaln()
Return the log of the absolute value of the gamma function of thisNDArray
element-wise.NDArray
gather(NDArray index, int axis)
Returns a partialNDArray
pointed by the indexed array.NDArray
get(NDIndex index)
Returns a partialNDArray
.DataType
getDataType()
Returns theDataType
of thisNDArray
.Device
getDevice()
Returns theDevice
of thisNDArray
.NDArray
getGradient()
Returns the gradientNDArray
attached to thisNDArray
.NDManager
getManager()
Returns theNDManager
that manages this.java.lang.String
getName()
Returns the name of thisNDArray
.ai.djl.ndarray.internal.NDArrayEx
getNDArrayInternal()
Returns an internal representative of NativeNDArray
.Shape
getShape()
Returns theShape
of thisNDArray
.SparseFormat
getSparseFormat()
Returns theSparseFormat
of thisNDArray
.java.lang.String
getUid()
Returns unique identifier of thisNDArray
.NDArray
gt(NDArray other)
Returns the booleanNDArray
for element-wise "Greater Than" comparison.NDArray
gt(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Greater" comparison.NDArray
gte(NDArray other)
Returns the booleanNDArray
for element-wise "Greater or equals" comparison.NDArray
gte(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Greater or equals" comparison.boolean
hasGradient()
Returns true if the gradient calculation is required for thisNDArray
.NDArray
inverse()
Computes the inverse of squareNDArray
if it exists.NDArray
isInfinite()
Returns the booleanNDArray
with valuetrue
where thisNDArray
's entries are infinite, orfalse
where they are not infinite.NDArray
isNaN()
Returns the booleanNDArray
with valuetrue
where thisNDArray
's entries are NaN, orfalse
where they are not NaN.NDArray
log()
Returns the natural logarithmic value of thisNDArray
element-wise.NDArray
log10()
Returns the base 10 logarithm of thisNDArray
element-wise.NDArray
log2()
Returns the base 2 logarithm of thisNDArray
element-wise.NDArray
logicalAnd(NDArray other)
Returns the truth value of thisNDArray
AND the otherNDArray
element-wise.NDArray
logicalNot()
Computes the truth value of NOT thisNDArray
element-wise.NDArray
logicalOr(NDArray other)
Computes the truth value of thisNDArray
OR the otherNDArray
element-wise.NDArray
logicalXor(NDArray other)
Computes the truth value of thisNDArray
XOR the otherNDArray
element-wise.NDArray
logSoftmax(int axis)
Applies the softmax function followed by a logarithm.NDArray
lt(NDArray other)
Returns the booleanNDArray
for element-wise "Less" comparison.NDArray
lt(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Less" comparison.NDArray
lte(NDArray other)
Returns the booleanNDArray
for element-wise "Less or equals" comparison.NDArray
lte(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Less or equals" comparison.NDArray
matMul(NDArray other)
Product matrix of thisNDArray
and the otherNDArray
.NDArray
max()
Returns the maximum of thisNDArray
.NDArray
max(int[] axes, boolean keepDims)
Returns the maximum of thisNDArray
along given axes.NDArray
maximum(NDArray other)
Returns the maximum of thisNDArray
and the otherNDArray
element-wise.NDArray
maximum(java.lang.Number n)
Returns the maximum of thisNDArray
and a number element-wise.NDArray
mean()
Returns the average of thisNDArray
.NDArray
mean(int[] axes, boolean keepDims)
Returns the average of thisNDArray
along given axes.NDArray
median()
Returns median value for thisNDArray
.NDArray
median(int[] axes)
Returns median value along given axes.NDArray
min()
Returns the minimum of thisNDArray
.NDArray
min(int[] axes, boolean keepDims)
Returns the minimum of thisNDArray
along given axes.NDArray
minimum(NDArray other)
Returns the minimum of thisNDArray
and the otherNDArray
element-wise.NDArray
minimum(java.lang.Number n)
Returns the minimum of thisNDArray
and a number element-wise.NDArray
mod(NDArray other)
Returns element-wise remainder of division.NDArray
mod(java.lang.Number n)
Returns element-wise remainder of division.NDArray
modi(NDArray other)
Returns in place element-wise remainder of division in place.NDArray
modi(java.lang.Number n)
Returns element-wise remainder of division in place.NDArray
mul(NDArray other)
Multiplies thisNDArray
by otherNDArray
s element-wise.NDArray
mul(java.lang.Number n)
Multiplies thisNDArray
by a number element-wise.NDArray
muli(NDArray other)
Multiplies thisNDArray
by otherNDArray
element-wise in place.NDArray
muli(java.lang.Number n)
Multiplies thisNDArray
by a number element-wise in place.NDArray
neg()
Returns the numerical negativeNDArray
element-wise.NDArray
negi()
Returns the numerical negativeNDArray
element-wise in place.NDArray
neq(NDArray other)
Returns the booleanNDArray
for element-wise "Not equals" comparison.NDArray
neq(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Not equals" comparison.NDArray
nonzero()
Returns the indices of elements that are non-zero.NDArray
norm(boolean keepDims)
Returns the norm of thisNDArray
.NDArray
norm(int ord, int[] axes, boolean keepDims)
Returns the norm of thisNDArray
.NDArray
normalize(double p, long dim, double eps)
Performs Lp normalization of the array over specified dimension.NDArray
oneHot(int depth, float onValue, float offValue, DataType dataType)
Returns a one-hotNDArray
.NDArray
percentile(java.lang.Number percentile)
Returns percentile for thisNDArray
.NDArray
percentile(java.lang.Number percentile, int[] axes)
Returns median along given dimension(s).NDArray
pow(NDArray other)
Takes the power of thisNDArray
with the otherNDArray
element-wise.NDArray
pow(java.lang.Number n)
Takes the power of thisNDArray
with a number element-wise.NDArray
powi(NDArray other)
Takes the power of thisNDArray
with the otherNDArray
element-wise in place.NDArray
powi(java.lang.Number n)
Takes the power of thisNDArray
with a number element-wise in place.NDArray
prod()
Returns the product of thisNDArray
.NDArray
prod(int[] axes, boolean keepDims)
Returns the product of thisNDArray
elements over the given axes.NDArray
put(NDArray index, NDArray data)
Set the entries ofNDArray
pointed by index according to linear indexing, to be the numbers in data, which is of the same shape as index.NDArray
repeat(int axis, long repeats)
Repeats element of thisNDArray
the number of times given repeats along given axis.NDArray
repeat(long repeats)
Repeats element of thisNDArray
the number of times given repeats.NDArray
repeat(long[] repeats)
Repeats element of thisNDArray
the number of times given repeats along each axis.NDArray
repeat(Shape desiredShape)
Repeats element of thisNDArray
to match the desired shape.NDArray
reshape(Shape shape)
Reshapes thisNDArray
to the givenShape
.NDArray
rotate90(int times, int[] axes)
Rotates an array by 90 degrees in the plane specified by axes.NDArray
round()
Returns the round of thisNDArray
element-wise.NDArray
sequenceMask(NDArray sequenceLength)
Sets all elements outside the sequence to 0.NDArray
sequenceMask(NDArray sequenceLength, float value)
Sets all elements outside the sequence to a constant value.void
set(NDIndex index, NDArray value)
Sets the specified index in thisNDArray
with the given values.void
set(NDIndex index, java.lang.Number value)
Sets the specified index in thisNDArray
with the given value.void
set(NDIndex index, java.util.function.Function<NDArray,NDArray> function)
Sets the specific index by a function.void
set(NDArray index, java.lang.Number value)
Sets theNDArray
by boolean mask or integer index.void
set(java.nio.Buffer buffer)
Sets thisNDArray
value fromBuffer
.void
setName(java.lang.String name)
Sets name of thisNDArray
.void
setRequiresGradient(boolean requiresGrad)
Attaches a gradientNDArray
to thisNDArray
and marks it soGradientCollector.backward(NDArray)
can compute the gradient with respect to it.void
setScalar(NDIndex index, java.lang.Number value)
Sets the specified scalar in thisNDArray
with the given value.NDArray
sign()
Returns the element-wise sign.NDArray
signi()
Returns the element-wise sign in-place.NDArray
sin()
Returns the trigonometric sine of thisNDArray
element-wise.NDArray
sinh()
Returns the hyperbolic sine of thisNDArray
element-wise.NDArray
softmax(int axis)
Applies the softmax function along the given axis.NDArray
sort()
Sorts the flattenedNDArray
.NDArray
sort(int axis)
Sorts the flattenedNDArray
.NDList
split(long[] indices, int axis)
Splits thisNDArray
into multiple sub-NDArray
s given indices along given axis.NDList
split(long sections, int axis)
Splits thisNDArray
into multiple subNDArray
s given sections along the given axis.NDArray
sqrt()
Returns the square root of thisNDArray
element-wise.NDArray
square()
Returns the square of thisNDArray
element-wise.NDArray
squeeze(int[] axes)
Removes singleton dimensions at the given axes.NDArray
stopGradient()
Returns an NDArray equal to this that stop gradient propagation through it.NDArray
sub(NDArray other)
Subtracts the otherNDArray
from thisNDArray
element-wise.NDArray
sub(java.lang.Number n)
Subtracts a number from thisNDArray
element-wise.NDArray
subi(NDArray other)
Subtracts the otherNDArray
from thisNDArray
element-wise in place.NDArray
subi(java.lang.Number n)
Subtracts a number from thisNDArray
element-wise in place.NDArray
sum()
Returns the sum of thisNDArray
.NDArray
sum(int[] axes, boolean keepDims)
Returns the sum of thisNDArray
along given axes.NDArray
take(NDManager manager, NDArray index)
Returns a partialNDArray
pointed by index according to linear indexing, and the of output is of the same shape as index.NDArray
tan()
Returns the trigonometric tangent of thisNDArray
element-wise.NDArray
tanh()
Returns the hyperbolic tangent of thisNDArray
element-wise.void
tempAttach(NDManager manager)
Temporarily attaches thisNDResource
to the specifiedNDManager
.NDArray
tile(int axis, long repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given by repeats along given axis.NDArray
tile(long repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given repeats.NDArray
tile(long[] repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given by repeats.NDArray
tile(Shape desiredShape)
Constructs aNDArray
by repeating thisNDArray
the number of times to match the desired shape.NDArray
toDegrees()
Converts thisNDArray
from radians to degrees element-wise.NDArray
toDense()
Returns a dense representation of the sparseNDArray
.NDArray
toDevice(Device device, boolean copy)
Moves thisNDArray
to a differentDevice
.NDArray
toRadians()
Converts thisNDArray
from degrees to radians element-wise.NDArray
toSparse(SparseFormat fmt)
Returns a sparse representation ofNDArray
.java.lang.String
toString()
java.lang.String[]
toStringArray(java.nio.charset.Charset charset)
Converts thisNDArray
to a String array with the specified charset.NDArray
toType(DataType dataType, boolean copy)
Converts thisNDArray
to a differentDataType
.NDArray
trace(int offset, int axis1, int axis2)
Returns the sum along diagonals of thisNDArray
.NDArray
transpose()
Returns thisNDArray
with axes transposed.NDArray
transpose(int... axes)
Returns thisNDArray
with given axes transposed.NDArray
trunc()
Returns the truncated value of thisNDArray
element-wise.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface ai.djl.ndarray.BytesSupplier
getAsBytes, getAsObject, getAsString, toByteBuffer
-
Methods inherited from interface ai.djl.ndarray.NDArray
all, allClose, allClose, any, argSort, argSort, booleanMask, broadcast, concat, concat, countNonzero, countNonzero, duplicate, encode, get, get, get, get, get, getBoolean, getByte, getDouble, getFloat, getInt, getLong, getResourceNDArrays, getScalar, getUint8, intern, isEmpty, isScalar, isSparse, like, max, mean, min, none, norm, norm, norm, normalize, normalize, oneHot, oneHot, onesLike, prod, reshape, scaleGradient, set, set, set, set, set, shapeEquals, size, size, split, split, squeeze, squeeze, stack, stack, sum, swapAxes, take, toArray, toBooleanArray, toByteArray, toDebugString, toDebugString, toDebugString, toDoubleArray, toFloatArray, toIntArray, toLongArray, toStringArray, toUint8Array, trace, trace, zerosLike
-
Methods inherited from interface ai.djl.ndarray.NDResource
detach, returnResource
-
-
-
-
Method Detail
-
getManager
public NDManager getManager()
Returns theNDManager
that manages this.- Specified by:
getManager
in interfaceNDResource
- Returns:
- the
NDManager
that manages this.
-
attach
public void attach(NDManager manager)
Attaches thisNDResource
to the specifiedNDManager
.Attached resource will be closed when the
NDManager
is closed.- Specified by:
attach
in interfaceNDResource
- Parameters:
manager
- theNDManager
to be attached to
-
tempAttach
public void tempAttach(NDManager manager)
Temporarily attaches thisNDResource
to the specifiedNDManager
.Attached resource will be returned to the original manager when the
NDManager
is closed.- Specified by:
tempAttach
in interfaceNDResource
- Parameters:
manager
- theNDManager
to be attached to
-
getSparseFormat
public SparseFormat getSparseFormat()
Returns theSparseFormat
of thisNDArray
.- Specified by:
getSparseFormat
in interfaceNDArray
- Returns:
- the
SparseFormat
of thisNDArray
-
getName
public java.lang.String getName()
Returns the name of thisNDArray
.
-
setName
public void setName(java.lang.String name)
Sets name of thisNDArray
.
-
getUid
public java.lang.String getUid()
Returns unique identifier of thisNDArray
.
-
getDevice
public Device getDevice()
-
getDataType
public DataType getDataType()
Returns theDataType
of thisNDArray
.DataType
is a definition of the precision level of theNDArray
. All values inside the sameNDArray
would have the sameDataType
.- Specified by:
getDataType
in interfaceNDArray
- Returns:
- the
DataType
of thisNDArray
-
getShape
public Shape getShape()
-
toDevice
public NDArray toDevice(Device device, boolean copy)
Moves thisNDArray
to a differentDevice
.
-
toType
public NDArray toType(DataType dataType, boolean copy)
Converts thisNDArray
to a differentDataType
.
-
setRequiresGradient
public void setRequiresGradient(boolean requiresGrad)
Attaches a gradientNDArray
to thisNDArray
and marks it soGradientCollector.backward(NDArray)
can compute the gradient with respect to it.- Specified by:
setRequiresGradient
in interfaceNDArray
- Parameters:
requiresGrad
- ifNDArray
requires gradient or not
-
getGradient
public NDArray getGradient()
Returns the gradientNDArray
attached to thisNDArray
.- Specified by:
getGradient
in interfaceNDArray
- Returns:
- the gradient
NDArray
-
hasGradient
public boolean hasGradient()
Returns true if the gradient calculation is required for thisNDArray
.- Specified by:
hasGradient
in interfaceNDArray
- Returns:
- true if the gradient calculation is required for this
NDArray
else false
-
stopGradient
public NDArray stopGradient()
Returns an NDArray equal to this that stop gradient propagation through it.- Specified by:
stopGradient
in interfaceNDArray
- Returns:
- an NDArray equal to this that stops gradient propagation through it
-
toStringArray
public java.lang.String[] toStringArray(java.nio.charset.Charset charset)
Converts thisNDArray
to a String array with the specified charset.This method is only applicable to the String typed NDArray and not for printing purpose
- Specified by:
toStringArray
in interfaceNDArray
- Parameters:
charset
- to charset for the string- Returns:
- Array of Strings
-
gather
public NDArray gather(NDArray index, int axis)
Returns a partialNDArray
pointed by the indexed array. Given NDArray arr, NDArray idx, and long axis, the output is out_{ijk} = arr_{idx_{ijk}, j, k} if axis=0 or arr_{i, idx_{ijk}, k} if axis=1 or arr_{i, j, idx_{ijk}} if axis=2
-
take
public NDArray take(NDManager manager, NDArray index)
Returns a partialNDArray
pointed by index according to linear indexing, and the of output is of the same shape as index.
-
put
public NDArray put(NDArray index, NDArray data)
Set the entries ofNDArray
pointed by index according to linear indexing, to be the numbers in data, which is of the same shape as index.
-
set
public void set(java.nio.Buffer buffer)
Sets thisNDArray
value fromBuffer
.
-
set
public void set(NDIndex index, NDArray value)
Sets the specified index in thisNDArray
with the given values.
-
set
public void set(NDIndex index, java.lang.Number value)
Sets the specified index in thisNDArray
with the given value.
-
set
public void set(NDIndex index, java.util.function.Function<NDArray,NDArray> function)
Sets the specific index by a function.
-
set
public void set(NDArray index, java.lang.Number value)
Sets theNDArray
by boolean mask or integer index.
-
setScalar
public void setScalar(NDIndex index, java.lang.Number value)
Sets the specified scalar in thisNDArray
with the given value.
-
copyTo
public void copyTo(NDArray array)
Deep-copies the currentNDArray
to the one passed in.
-
booleanMask
public NDArray booleanMask(NDArray index, int axis)
Returns portion of thisNDArray
given the index booleanNDArray
along given axis.- Specified by:
booleanMask
in interfaceNDArray
- Parameters:
index
- booleanNDArray
maskaxis
- an integer that represents the axis ofNDArray
to mask from- Returns:
- the result
NDArray
-
sequenceMask
public NDArray sequenceMask(NDArray sequenceLength, float value)
Sets all elements outside the sequence to a constant value.This function takes an n-dimensional input array of the form [batch_size, max_sequence_length, ....] and returns an array of the same shape. Parameter
sequenceLength
is used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size].- Specified by:
sequenceMask
in interfaceNDArray
- Parameters:
sequenceLength
- used to handle variable-length sequencesvalue
- the constant value to be set- Returns:
- the result
NDArray
-
sequenceMask
public NDArray sequenceMask(NDArray sequenceLength)
Sets all elements outside the sequence to 0.This function takes an n-dimensional input array of the form [batch_size, max_sequence_length, ....] and returns an array of the same shape. Parameter
sequenceLength
is used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size].- Specified by:
sequenceMask
in interfaceNDArray
- Parameters:
sequenceLength
- used to handle variable-length sequences- Returns:
- the result
NDArray
-
contentEquals
public boolean contentEquals(java.lang.Number number)
Returnstrue
if all elements in thisNDArray
are equal to theNumber
.Examples
jshell> NDArray array = manager.ones(new Shape(2, 3)); jshell> array.contentEquals(1); // return true instead of boolean NDArray true
- Specified by:
contentEquals
in interfaceNDArray
- Parameters:
number
- the number to compare- Returns:
- the boolean result
-
contentEquals
public boolean contentEquals(NDArray other)
Returnstrue
if all elements in thisNDArray
are equal to the otherNDArray
.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(2, 3); jshell> NDArray array2 = manager.create(new float[] {0f, 1f, 2f, 3f, 4f, 5f}, new Shape(2, 3)); jshell> array1.contentEquals(array2); // return true instead of boolean NDArray true
- Specified by:
contentEquals
in interfaceNDArray
- Parameters:
other
- the otherNDArray
to compare- Returns:
- the boolean result
-
eq
public NDArray eq(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Equals" comparison.Examples
jshell> NDArray array = manager.ones(new Shape(1)); jshell> array.eq(1); ND: (1) cpu() boolean [ true]
-
eq
public NDArray eq(NDArray other)
Returns the booleanNDArray
for element-wise "Equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {0f, 1f, 3f}); jshell> NDArray array2 = manager.arange(3f); jshell> array1.eq(array2); ND: (3) cpu() boolean [ true, true, false]
-
neq
public NDArray neq(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Not equals" comparison.Examples
jshell> NDArray array = manager.arange(4f).reshape(2, 2); jshell> array.neq(1); ND: (2, 2) cpu() boolean [[ true, false], [ true, true], ]
-
neq
public NDArray neq(NDArray other)
Returns the booleanNDArray
for element-wise "Not equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {1f, 3f}); jshell> array1.neq(array2); ND: (2) cpu() boolean [false, true] jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {1f, 3f, 1f, 4f}, new Shape(2, 2)); jshell> array1.neq(array2); // broadcasting ND: (2, 2) cpu() boolean [[false, true], [false, true], ]
-
gt
public NDArray gt(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Greater" comparison.Examples
jshell> NDArray array = manager.create(new float[] {4f, 2f}); jshell> array.gt(2f); ND: (2) cpu() boolean [ true, false]
-
gt
public NDArray gt(NDArray other)
Returns the booleanNDArray
for element-wise "Greater Than" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.neq(array2); ND: (2) cpu() boolean [ true, false]
-
gte
public NDArray gte(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Greater or equals" comparison.jshell> NDArray array = manager.create(new float[] {4f, 2f}); jshell> array.gte(2f); ND: (2) cpu() boolean [ true, true]
-
gte
public NDArray gte(NDArray other)
Returns the booleanNDArray
for element-wise "Greater or equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.gte(array2); ND: (2) cpu() boolean [ true, true]
-
lt
public NDArray lt(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Less" comparison.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.lt(2f); ND: (2) cpu() boolean [ true, false]
-
lt
public NDArray lt(NDArray other)
Returns the booleanNDArray
for element-wise "Less" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.lt(array2); ND: (2) cpu() boolean [ true, false]
-
lte
public NDArray lte(java.lang.Number n)
Returns the booleanNDArray
for element-wise "Less or equals" comparison.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.lte(2f); ND: (2) cpu() boolean [ true, true]
-
lte
public NDArray lte(NDArray other)
Returns the booleanNDArray
for element-wise "Less or equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.lte(array2); ND: (2) cpu() boolean [ true, true]
-
add
public NDArray add(java.lang.Number n)
Adds a number to thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.add(2f); ND: (2) cpu() float32 [3., 4.]
-
add
public NDArray add(NDArray other)
Adds otherNDArray
s to thisNDArray
element-wise.The shapes of this
NDArray
and otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.add(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.], ]
-
sub
public NDArray sub(java.lang.Number n)
Subtracts a number from thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.sub(2f); ND: (2) cpu() float32 [-1., 0.]
-
sub
public NDArray sub(NDArray other)
Subtracts the otherNDArray
from thisNDArray
element-wise.The shapes of this
NDArray
and otherNDArray
s must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9).reshape(3, 3); jshell> NDArray array2 = manager.arange(3); jshell> array1.sub(array2); // broadcasting ND: (3, 3) cpu() float32 [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ]
-
mul
public NDArray mul(java.lang.Number n)
Multiplies thisNDArray
by a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.mul(3f); ND: (2) cpu() float32 [3., 6.]
-
mul
public NDArray mul(NDArray other)
Multiplies thisNDArray
by otherNDArray
s element-wise.The shapes of this
NDArray
and otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.mul(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ]
-
div
public NDArray div(java.lang.Number n)
Divides thisNDArray
by a number element-wise.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.div(4f); ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ]
-
div
public NDArray div(NDArray other)
Divides thisNDArray
by the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.ones(new Shape(3)).mul(10); jshell> array1.div(array2); // broadcasting ND: (3, 3) cpu() float32 [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ]
-
mod
public NDArray mod(java.lang.Number n)
Returns element-wise remainder of division.Examples
jshell> NDArray array = manager.arange(7f); jshell> array.mod(5f); ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.]
-
mod
public NDArray mod(NDArray other)
Returns element-wise remainder of division.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 7f}); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.mod(array2); ND: (2) cpu() float32 [0., 1.]
-
pow
public NDArray pow(java.lang.Number n)
Takes the power of thisNDArray
with a number element-wise.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.pow(4f); ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.]
-
pow
public NDArray pow(NDArray other)
Takes the power of thisNDArray
with the otherNDArray
element-wise.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(3, 2); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.pow(array2); // broadcasting ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ]
-
addi
public NDArray addi(java.lang.Number n)
Adds a number to thisNDArray
element-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.addi(2f); ND: (2) cpu() float32 [3., 4.] jshell> array; ND: (2) cpu() float32 [3., 4.]
-
addi
public NDArray addi(NDArray other)
Adds otherNDArray
s to thisNDArray
element-wise in place.The shapes of this
NDArray
and otherNDArray
s must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {3f, 4f}); jshell> array1.addi(array2); ND: (2) cpu() float32 [4., 6.] jshell> array; ND: (2) cpu() float32 [4., 6.]
-
subi
public NDArray subi(java.lang.Number n)
Subtracts a number from thisNDArray
element-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.subi(2f); ND: (2) cpu() float32 [-1., 0.] jshell> array; ND: (2) cpu() float32 [-1., 0.]
-
subi
public NDArray subi(NDArray other)
Subtracts the otherNDArray
from thisNDArray
element-wise in place.The shapes of this
NDArray
and otherNDArray
s must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.subi(array2); // broadcasting ND: (3, 3) cpu() float32 [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ] jshell> array1; [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ]
-
muli
public NDArray muli(java.lang.Number n)
Multiplies thisNDArray
by a number element-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.muli(3f); ND: (2) cpu() float32 [3., 6.] jshell> array; ND: (2) cpu() float32 [3., 6.]
-
muli
public NDArray muli(NDArray other)
Multiplies thisNDArray
by otherNDArray
element-wise in place.The shapes of this
NDArray
and otherNDArray
s must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.muli(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ] jshell> array1; ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ]
-
divi
public NDArray divi(java.lang.Number n)
Divides thisNDArray
by a number element-wise in place.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.divi(4f); ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ] jshell> array; ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ]
-
divi
public NDArray divi(NDArray other)
Divides thisNDArray
by the otherNDArray
element-wise in place.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.ones(new Shape(3)).mul(10); jshell> array1.divi(array2); // broadcasting ND: (3, 3) cpu() float32 [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ] jshell> array1; [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ]
-
modi
public NDArray modi(java.lang.Number n)
Returns element-wise remainder of division in place.Examples
jshell> NDArray array = manager.arange(7f); jshell> array.modi(5f); ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.] jshell> array; ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.]
-
modi
public NDArray modi(NDArray other)
Returns in place element-wise remainder of division in place.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 7f}); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.modi(array2); ND: (2) cpu() float32 [0., 1.] jshell> array1; ND: (2) cpu() float32 [0., 1.]
-
powi
public NDArray powi(java.lang.Number n)
Takes the power of thisNDArray
with a number element-wise in place.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.powi(4f); ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.] jshell> array; ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.]
-
powi
public NDArray powi(NDArray other)
Takes the power of thisNDArray
with the otherNDArray
element-wise in place.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(3, 2); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.powi(array2); // broadcasting ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ] jshell> array1; ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ]
-
sign
public NDArray sign()
Returns the element-wise sign.
-
signi
public NDArray signi()
Returns the element-wise sign in-place.
-
maximum
public NDArray maximum(java.lang.Number n)
Returns the maximum of thisNDArray
and a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f, 4f}); jshell> array.maximum(3f); ND: (3) cpu() float32 [3., 3., 4.]
-
maximum
public NDArray maximum(NDArray other)
Returns the maximum of thisNDArray
and the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {2f, 3f, 4f}); jshell> NDArray array2 = manager.create(new float[] {1f, 5f, 2f}); jshell> array1.maximum(array2); ND: (3) cpu() float32 [2., 5., 4.] jshell> NDArray array1 = manager.eye(2); jshell> NDArray array2 = manager.create(new float[] {0.5f, 2f}); jshell> array1.maximum(array2); // broadcasting ND: (2, 2) cpu() float32 [[1. , 2. ], [0.5, 2. ], ]
-
minimum
public NDArray minimum(java.lang.Number n)
Returns the minimum of thisNDArray
and a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f, 4f}); jshell> array.minimum(3f); ND: (3) cpu() float32 [2., 3., 3.]
-
minimum
public NDArray minimum(NDArray other)
Returns the minimum of thisNDArray
and the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {2f, 3f, 4f}); jshell> NDArray array2 = manager.create(new float[] {1f, 5f, 2f}); jshell> array1.minimum(array2); ND: (3) cpu() float32 [1., 3., 2.] jshell> NDArray array1 = manager.eye(2); jshell> NDArray array2 = manager.create(new float[] {0.5f, 2f}); jshell> array1.minimum(array2); // broadcasting ND: (2, 2) cpu() float32 [[0.5, 0. ], [0. , 1. ], ]
-
neg
public NDArray neg()
Returns the numerical negativeNDArray
element-wise.jshell> NDArray array = manager.arange(5f); jshell> array.neg(); ND: (5) cpu() float32 [-0., -1., -2., -3., -4.]
-
negi
public NDArray negi()
Returns the numerical negativeNDArray
element-wise in place.jshell> NDArray array = manager.arange(5f); jshell> array.negi(); jshell> array; ND: (5) cpu() float32 [-0., -1., -2., -3., -4.]
-
abs
public NDArray abs()
Returns the absolute value of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1f, -2f}); jshell> array.abs(); ND: (2) cpu() float32 [1., 2.]
-
square
public NDArray square()
Returns the square of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, -3f}); jshell> array.square(); ND: (2) cpu() float32 [4., 9.]
-
sqrt
public NDArray sqrt()
Returns the square root of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {4f}); jshell> array.sqrt(); ND: (1) cpu() float32 [2., ]
-
cbrt
public NDArray cbrt()
Returns the cube-root of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 8f, 27f}); jshell> array.cbrt(); ND: (3) cpu() float32 [1., 2., 3.]
-
floor
public NDArray floor()
Returns the floor of thisNDArray
element-wise.The floor of the scalar x is the largest integer i, such that i <= x.
Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.floor(); ND: (7) cpu() float32 [-2., -2., -1., 0., 1., 1., 2.]
-
ceil
public NDArray ceil()
Returns the ceiling of thisNDArray
element-wise.The ceil of the scalar x is the smallest integer i, such that i >= x.
Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.ceil(); ND: (7) cpu() float32 [-1., -1., -0., 1., 2., 2., 2.]
-
round
public NDArray round()
Returns the round of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.round(); ND: (7) cpu() float32 [-2., -2., -0., 0., 2., 2., 2.]
-
trunc
public NDArray trunc()
Returns the truncated value of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.trunc(); ND: (7) cpu() float32 [-1., -1., -0., 0., 1., 1., 2.]
-
exp
public NDArray exp()
Returns the exponential value of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {0f, 2.5f}); jshell> array.exp(); ND: (2) cpu() float32 [ 1. , 12.1825]
-
gammaln
public NDArray gammaln()
Return the log of the absolute value of the gamma function of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {0.5f, 1f, 1.5f}); jshell> array.gammaln(); ND: (2) cpu() float32 [ 0.5724, 0.0000, -0.1208]
-
log
public NDArray log()
Returns the natural logarithmic value of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {0f, 2.5f}); jshell> array.log(); ND: (2) cpu() float32 [ -inf, 0.9163]
-
log10
public NDArray log10()
Returns the base 10 logarithm of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1000f, 1f, 150f}); jshell> array.log10(); ND: (3) cpu() float32 [3. , 0. , 2.1761]
-
log2
public NDArray log2()
Returns the base 2 logarithm of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new float[] {8, 1f, 5f}); jshell> array.log2(); ND: (3) cpu() float32 [3. , 0. , 2.3219]
-
sin
public NDArray sin()
Returns the trigonometric sine of thisNDArray
element-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new float[] {0f, 30f, 45f, 60f, 90f}); jshell> array = array.mul(Math.PI).div(180f); jshell> array.sin(); ND: (5) cpu() float32 [0. , 0.5 , 0.7071, 0.866 , 1. ]
-
cos
public NDArray cos()
Returns the trigonometric cosine of thisNDArray
element-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI/2, Math.PI}); jshell> array.cos(); ND: (3) cpu() float64 [ 1.0000000e+00, 6.1232340e-17, -1.0000000e+00],
-
tan
public NDArray tan()
Returns the trigonometric tangent of thisNDArray
element-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new double[] {-Math.PI, Math.PI/2, Math.PI}); jshell> array.tan(); ND: (3) cpu() float64 [ 1.2246468e-16, 1.6331239e+16, -1.2246468e-16],
-
asin
public NDArray asin()
Returns the inverse trigonometric sine of thisNDArray
element-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {1f, -1f, 0f}); jshell> array.asin(); ND: (3) cpu() float64 [ 1.5708, -1.5708, 0. ]
-
acos
public NDArray acos()
Returns the inverse trigonometric cosine of thisNDArray
element-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {1f, -1f}); jshell> array.acos(); ND: (2) cpu() float64 [0. , 3.1416]
-
atan
public NDArray atan()
Returns the inverse trigonometric tangent of thisNDArray
element-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f}); jshell> array.atan(); ND: (2) cpu() float64 [0. , 0.7854]
-
sinh
public NDArray sinh()
Returns the hyperbolic sine of thisNDArray
element-wise.sinh(x)=0.5*(exp(x) - exp(-x))
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.sinh(); ND: (2) cpu() float64 [ 0. , 11.5487]
-
cosh
public NDArray cosh()
Returns the hyperbolic cosine of thisNDArray
element-wise.cosh(x)=0.5*(exp(x)+exp(-x))
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.cosh(); ND: (2) cpu() float64 [ 1. , 11.592 ]
-
tanh
public NDArray tanh()
Returns the hyperbolic tangent of thisNDArray
element-wise.tanh(x)=sinh(x)/cosh(x)
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.tanh(); ND: (2) cpu() float64 [0. , 0.9963]
-
asinh
public NDArray asinh()
Returns the inverse hyperbolic sine of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new double[] {Math.E, 10}); jshell> array.asinh(); ND: (2) cpu() float64 [1.7254, 2.9982]
-
acosh
public NDArray acosh()
Returns the inverse hyperbolic cosine of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new double[] {Math.E, 10}); jshell> array.acosh(); ND: (2) cpu() float64 [1.6575, 2.9932]
-
atanh
public NDArray atanh()
Returns the inverse hyperbolic tangent of thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new double[] {0, -0.5}); jshell> array.atanh(); ND: (2) cpu() float64 [ 0. , -0.5493]
-
toDegrees
public NDArray toDegrees()
Converts thisNDArray
from radians to degrees element-wise.Examples
jshell> NDArray array = manager.arange(6f).mul(Math.PI / 3); jshell> array.toDegrees(); ND: (6) cpu() float32 [ 0., 60., 120., 180., 240., 300.]
-
toRadians
public NDArray toRadians()
Converts thisNDArray
from degrees to radians element-wise.Examples
jshell> NDArray array = manager.arange(6f).mul(60); jshell> array.toRadians(); ND: (6) cpu() float32 [0. , 1.0472, 2.0944, 3.1416, 4.1888, 5.236 ]
-
max
public NDArray max()
Returns the maximum of thisNDArray
.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.max(); // Maximum of the flattened array ND: () cpu() float32 3. jshell> array.max().getFloat() // Use getFloat() to get native float 3.0
-
max
public NDArray max(int[] axes, boolean keepDims)
Returns the maximum of thisNDArray
along given axes.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.max(new int[]{0}, true); // Maximum along the first axis and keep dimension ND: (1, 2) cpu() float32 [[2., 3.], ] jshell> array.max(new int[]{1}, true); // Maximum along the second axis and keep dimension ND: (2, 1) cpu() float32 [[1.], [3.], ]
-
min
public NDArray min()
Returns the minimum of thisNDArray
.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.min(); // Minimum of the flattened array ND: () cpu() float32 0. jshell> array.min().getFloat(); // Use getFloat() to get native float 0.0
-
min
public NDArray min(int[] axes, boolean keepDims)
Returns the minimum of thisNDArray
along given axes.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.min(new int[]{0}, true) // Minimum along the first axis and keep dimension ND: (1, 2) cpu() float32 [[0., 1.], ] jshell> array.min(new int[]{1}, true) // Minimum along the second axis and keep dimension ND: (2, 1) cpu() float32 [[0.], [2.], ]
-
sum
public NDArray sum()
Returns the sum of thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {0.5f, 1.5f}); jshell> array.sum(); ND: () cpu() float32 2. jshell> array.sum().getFloat(); // Use getFloat() to get native float 2.0 jshell> NDArray array = manager.create(new float[] {0f, 1f, 0f, 5f}, new Shape(2, 2)); jshell> array.sum(); ND: () cpu() float32 6.
-
sum
public NDArray sum(int[] axes, boolean keepDims)
Returns the sum of thisNDArray
along given axes.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 0f, 5f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [0., 5.], ] jshell> array.sum(new int[] {0}, true); ND: (1, 2) cpu() float32 [[0., 6.], ] jshell> array.sum(new int[] {1}, true); ND: (2, 2) cpu() float32 [[0., 1.], [0., 5.], ]
-
cumProd
public NDArray cumProd(int axis)
Returns the cumulative product of elements of input in the dimension dim. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. [x1, x1 * x2, x1 * x2 *x3 ...]
-
cumProd
public NDArray cumProd(int axis, DataType dataType)
Returns the cumulative product of elements of input in the dimension dim. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. [x1, x1 * x2, x1 * x2 *x3 ...]
-
prod
public NDArray prod()
Returns the product of thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f}); jshell> array.prod(); ND: () cpu() float32 6. jshell> array.prod().getFloat(); // Use getFloat to get native float 6.0 jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.prod(); ND: () cpu() float32 24.
-
prod
public NDArray prod(int[] axes, boolean keepDims)
Returns the product of thisNDArray
elements over the given axes.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.prod(new int[] {0}, true); ND: (1, 2) cpu() float32 [[3., 8.], ] jshell> array.prod(new int[] {1}, true); ND: (2, 1) cpu() float32 [[ 2.], [12.], ]
-
mean
public NDArray mean()
Returns the average of thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f}); jshell> array.mean(); ND: () cpu() float32 2.5 jshell> array.mean().getFloat(); // Use getFloat() to get native float 2.5 jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.mean(); ND: () cpu() float32 2.5
-
mean
public NDArray mean(int[] axes, boolean keepDims)
Returns the average of thisNDArray
along given axes.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.mean(new int[] {0}, true); ND: (1, 2) cpu() float32 [[2., 3.], ] jshell> array.mean(new int[] {1}, true); ND: (2, 1) cpu() float32 [[1.5], [3.5], ]
-
normalize
public NDArray normalize(double p, long dim, double eps)
Performs Lp normalization of the array over specified dimension.Examples
jshell> NDArray array = manager.create(new float[] {1, 2, 3, 4, 5, 6}, new Shape(2, 3)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.normalize(2, 1, 1e-12); ND: (2, 3) cpu() float32 [[0.2673, 0.5345, 0.8018], [0.4558, 0.5698, 0.6838], ]
-
rotate90
public NDArray rotate90(int times, int[] axes)
Rotates an array by 90 degrees in the plane specified by axes.Rotation direction is from the first towards the second axis.
-
trace
public NDArray trace(int offset, int axis1, int axis2)
Returns the sum along diagonals of thisNDArray
.If this
NDArray
is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,i+offset] for all i. If thisNDArray
has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-arrays whose traces are returned. TheShape
of the resulting array is the same as thisNDArray
with axis1 and axis2 removed.Examples
jshell> NDArray array = manager.arange(8f).reshape(2, 2, 2); jshell> array; ND: (2, 2, 2) cpu() float32 [[[0., 1.], [2., 3.], ], [[4., 5.], [6., 7.], ], ] jshell> array.trace(1,1,2); ND: (2) cpu() float32 [1., 5.]
- Specified by:
trace
in interfaceNDArray
- Parameters:
offset
- offset of the diagonal from the main diagonal. Can be both positive and negative.axis1
- axes to be used as the first axis of the 2-D sub-arrays from which the diagonals should be takenaxis2
- axes to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken- Returns:
- the sum along diagonals of this
NDArray
-
split
public NDList split(long sections, int axis)
Splits thisNDArray
into multiple subNDArray
s given sections along the given axis.Examples
jshell> NDArray array = manager.arange(18f).reshape(2, 9); jshell> array; ND: (2, 9) cpu() float32 [[ 0., 1., 2., 3., 4., 5., 6., 7., 8.], [ 9., 10., 11., 12., 13., 14., 15., 16., 17.], ] jshell> array.split(3, 1).forEach(System.out::println); ND: (2, 3) cpu() float32 [[ 0., 1., 2.], [ 9., 10., 11.], ] ND: (2, 3) cpu() float32 [[ 3., 4., 5.], [12., 13., 14.], ] ND: (2, 3) cpu() float32 [[ 6., 7., 8.], [15., 16., 17.], ]
-
split
public NDList split(long[] indices, int axis)
Splits thisNDArray
into multiple sub-NDArray
s given indices along given axis.Examples
jshell> NDArray array = manager.arange(18f).reshape(2, 9); jshell> array; ND: (2, 9) cpu() float32 [[ 0., 1., 2., 3., 4., 5., 6., 7., 8.], [ 9., 10., 11., 12., 13., 14., 15., 16., 17.], ] jshell> array.split(new int[] {2,4,5}, 1).forEach(System.out::println); ND: (2, 2) cpu() float32 [[ 0., 1.], [ 9., 10.], ] ND: (2, 2) cpu() float32 [[ 2., 3.], [11., 12.], ] ND: (2, 1) cpu() float32 [[ 4.], [13.], ] ND: (2, 4) cpu() float32 [[ 5., 6., 7., 8.], [14., 15., 16., 17.], ]
- Specified by:
split
in interfaceNDArray
- Parameters:
indices
- the entries indicate where along axis thisNDArray
is split. If an index exceeds the dimension of thisNDArray
along axis, an empty sub-array is returned correspondinglyaxis
- the axis to split along- Returns:
- an
NDList
with numOutputsNDArray
s withShape
(this.shape.axis /= axis)
-
flatten
public NDArray flatten()
Flattens thisNDArray
into a 1-DNDArray
in row-major order.To flatten in column-major order, first transpose this
NDArray
Examples
jshell> NDArray array = manager.create(new float[]{1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.flatten(); ND: (4) cpu() float32 [1., 2., 3., 4.]
-
reshape
public NDArray reshape(Shape shape)
Reshapes thisNDArray
to the givenShape
.You can reshape it to match another NDArray by calling
a.reshape(b.getShape())
Examples
jshell> NDArray array = manager.arange(6f); jshell> array; ND: (6) cpu() float32 [0., 1., 2., 3., 4., 5.] jshell> array.reshape(new Shape(2, 3)); ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ]
-
expandDims
public NDArray expandDims(int axis)
Expands theShape
of aNDArray
.Inserts a new axis that will appear at the axis position in the expanded
NDArray
shape.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array; ND: (2) cpu() float32 [1., 2.] jshell> array.expandDims(0); ND: (1, 2) cpu() float32 [[1., 2.], ] jshell> array.expandDims(1); ND: (2, 1) cpu() float32 [[1.], [2.], ]
- Specified by:
expandDims
in interfaceNDArray
- Parameters:
axis
- the position in the expanded axes where the new axis is placed- Returns:
- the result
NDArray
. The number of dimensions is one greater than that of theNDArray
-
squeeze
public NDArray squeeze(int[] axes)
Removes singleton dimensions at the given axes.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}, new Shape(1, 3, 1)); jshell> array; ND: (1, 3, 1) cpu() float32 [[[0.], [1.], [2.], ], ] jshell> array.squeeze(new int[] {0, 2}); ND: (3) cpu() float32 [0., 1., 2.]
-
logicalAnd
public NDArray logicalAnd(NDArray other)
Returns the truth value of thisNDArray
AND the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new boolean[] {true}); jshell> NDArray array2 = manager.create(new boolean[] {false}); jshell> array1.logicalAnd(array2); ND: (1) cpu() boolean [false] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalAnd(array2); ND: (2) cpu() boolean [false, false]
jshell> NDArray array = manager.arange(5f); jshell> array.gt(1).logicalAnd(array.lt(4)); ND: (5) cpu() boolean [false, false, true, true, false]
- Specified by:
logicalAnd
in interfaceNDArray
- Parameters:
other
- the otherNDArray
to operate on- Returns:
- the boolean
NDArray
of the logical AND operation applied to the elements of thisNDArray
and the otherNDArray
-
logicalOr
public NDArray logicalOr(NDArray other)
Computes the truth value of thisNDArray
OR the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new boolean[] {true}); jshell> NDArray array2 = manager.create(new boolean[] {false}); jshell> array1.logicalOr(array2); ND: (1) cpu() boolean [ true] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalOr(array2); ND: (2) cpu() boolean [ true, false]
jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalOr(array.gt(3)); ND: (5) cpu() boolean [ true, false, false, false, true]
-
logicalXor
public NDArray logicalXor(NDArray other)
Computes the truth value of thisNDArray
XOR the otherNDArray
element-wise.The shapes of this
NDArray
and the otherNDArray
must be broadcastable.Examples
jshell> NDArray array = manager.create(new boolean[] {true}); jshell> array1.logicalXor(array2); ND: (1) cpu() boolean [ true] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalXor(array2); ND: (2) cpu() boolean [ true, false]
jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalXor(array.gt(3)); ND: (5) cpu() boolean [ true, false, false, false, true]
- Specified by:
logicalXor
in interfaceNDArray
- Parameters:
other
- the otherNDArray
to operate on- Returns:
- the boolean
NDArray
of the logical XOR operation applied to the elements of thisNDArray
and the otherNDArray
-
logicalNot
public NDArray logicalNot()
Computes the truth value of NOT thisNDArray
element-wise.Examples
jshell> NDArray array = manager.create(new boolean[] {true}); jshell> array.logicalNot(); ND: (1) cpu() boolean [ false]
jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalNot(); ND: (5) cpu() boolean [false, true, true, true, true]
- Specified by:
logicalNot
in interfaceNDArray
- Returns:
- the boolean
NDArray
-
argSort
public NDArray argSort(int axis, boolean ascending)
Returns the indices that would sort thisNDArray
given the axis.Perform an indirect sort along the given axis. It returns a
NDArray
of indices of the sameShape
as thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {0f, 3f, 2f, 2f}, new Shape(2, 2)); jshell> array.argSort(0, false); ND: (2, 2) cpu() int64 [[ 1, 0], [ 0, 1], ]
- Specified by:
argSort
in interfaceNDArray
- Parameters:
axis
- the axis to sort alongascending
- whether to sort ascending- Returns:
- a
NDArray
of indices corresponding to elements in thisNDArray
on the axis, the output DataType is alwaysDataType.INT64
-
sort
public NDArray sort()
Sorts the flattenedNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {1f, 4f, 3f, 1f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 4.], [3., 1.], ] jshell> array.sort(); // sort the flattened array ND: (2, 2) cpu() float32 [[1., 4.], [1., 3.], ]
-
sort
public NDArray sort(int axis)
Sorts the flattenedNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {1f, 4f, 3f, 1f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 4.], [3., 1.], ] jshell> array.sort(0); // sort along the first axis ND: (2, 2) cpu() float32 [[1., 1.], [3., 4.], ]
-
softmax
public NDArray softmax(int axis)
Applies the softmax function along the given axis.- Specified by:
softmax
in interfaceNDArray
- Parameters:
axis
- the axis along which to apply- Returns:
- the result
NDArray
- See Also:
- softmax,
NDArray.softmax(int)
-
logSoftmax
public NDArray logSoftmax(int axis)
Applies the softmax function followed by a logarithm.Mathematically equivalent to calling softmax and then log. This single operator is faster than calling two operators and numerically more stable when computing gradients.
- Specified by:
logSoftmax
in interfaceNDArray
- Parameters:
axis
- the axis along which to apply- Returns:
- the result
NDArray
-
cumSum
public NDArray cumSum()
Returns the cumulative sum of the elements in the flattenedNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f}, new Shape(2, 3)); jshell> array; ND: (2, 3) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.cumSum(); // cumSum on flattened array ND: (6) cpu() float32 [ 1., 3., 6., 10., 15., 21.]
-
cumSum
public NDArray cumSum(int axis)
Return the cumulative sum of the elements along a given axis.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f}, new Shape(2, 3)); jshell> array; ND: (2, 3) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.cumSum(0); ND: (2, 3) cpu() float32 [[1., 2., 3.], [5., 7., 9.], ] jshell> array.cumSum(1); ND: (2, 3) cpu() float32 [[ 1., 3., 6.], [ 4., 9., 15.], ]
-
isInfinite
public NDArray isInfinite()
Returns the booleanNDArray
with valuetrue
where thisNDArray
's entries are infinite, orfalse
where they are not infinite.- Specified by:
isInfinite
in interfaceNDArray
- Returns:
- the boolean
NDArray
with valuetrue
if thisNDArray
's entries are infinite
-
isNaN
public NDArray isNaN()
Returns the booleanNDArray
with valuetrue
where thisNDArray
's entries are NaN, orfalse
where they are not NaN.Examples
jshell> NDArray array = manager.create(new float[] {Float.POSITIVE_INFINITY, 0, Float.NaN}); jshell> array.isNaN(); ND: (3) cpu() boolean [false, false, true]
-
tile
public NDArray tile(long repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(2); ND: (6) cpu() float32 [0., 1., 2., 0., 1., 2.]
-
tile
public NDArray tile(int axis, long repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given by repeats along given axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(1, 2); ND: (1, 6) cpu() float32 [[0., 1., 2., 0., 1., 2.], ]
-
tile
public NDArray tile(long[] repeats)
Constructs aNDArray
by repeating thisNDArray
the number of times given by repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(new long[] {2, 2}); ND: (2, 6) cpu() float32 [[0., 1., 2., 0., 1., 2.], [0., 1., 2., 0., 1., 2.], ]
-
tile
public NDArray tile(Shape desiredShape)
Constructs aNDArray
by repeating thisNDArray
the number of times to match the desired shape.If the desired
Shape
has fewer dimensions than thisNDArray
, it will tile against the last axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(new Shape(6)); ND: (6) cpu() float32 [0., 1., 2., 0., 1., 2.]
-
repeat
public NDArray repeat(long repeats)
Repeats element of thisNDArray
the number of times given repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.repeat(2); ND: (6) cpu() float32 [0., 0., 1., 1., 2., 2.]
-
repeat
public NDArray repeat(int axis, long repeats)
Repeats element of thisNDArray
the number of times given repeats along given axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(1, 2); ND: (6) cpu() float32 [0., 0., 1., 1., 2., 2.]
-
repeat
public NDArray repeat(long[] repeats)
Repeats element of thisNDArray
the number of times given repeats along each axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(new long[] {2, 2}); ND: (12) cpu() float32 [0., 0., 0., 0., 1., 1., 1., 1., 2., 2., 2., 2.]
-
repeat
public NDArray repeat(Shape desiredShape)
Repeats element of thisNDArray
to match the desired shape.If the desired
Shape
has fewer dimensions that the array, it will repeat against the last axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(new Shape(4, 4)); ND: (4, 4) cpu() float32 [[0., 0., 1., 1.], [0., 0., 1., 1.], [2., 2., 3., 3.], [2., 2., 3., 3.], ]
-
dot
public NDArray dot(NDArray other)
Dot product of thisNDArray
and the otherNDArray
.- If both this
NDArray
and the otherNDArray
are 1-DNDArray
s, it is inner product of vectors (without complex conjugation). - If both this
NDArray
and the otherNDArray
are 2-DNDArray
s, it is matrix multiplication. - If either this
NDArray
or the otherNDArray
is 0-DNDArray
(scalar), it is equivalent to mul. - If this
NDArray
is N-DNDArray
and the otherNDArray
is 1-DNDArray
, it is a sum product over the last axis of those. - If this
NDArray
is N-DNDArray
and the otherNDArray
is M-DNDArray
(where M>=2), it is a sum product over the last axis of thisNDArray
and the second-to-last axis of the otherNDArray
Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f, 3f}); jshell> NDArray array2 = manager.create(new float[] {4f, 5f, 6f}); jshell> array1.dot(array2); // inner product ND: () cpu() float32 32. jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {5f, 6f, 7f, 8f}, new Shape(2, 2)); jshell> array1.dot(array2); // matrix multiplication ND: (2, 2) cpu() float32 [[19., 22.], [43., 50.], ] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(5f); jshell> array1.dot(array2); ND: (2, 2) cpu() float32 [[ 5., 10.], [15., 20.], ] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.dot(array2); ND: (2) cpu() float32 [ 5., 11.] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f}, new Shape(2, 2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f, 3f ,4f}, new Shape(2, 2)); jshell> array1.dot(array2); ND: (2, 2, 2) cpu() float32 [[[ 7., 10.], [15., 22.], ], [[23., 34.], [31., 46.], ], ]
- If both this
-
matMul
public NDArray matMul(NDArray other)
Product matrix of thisNDArray
and the otherNDArray
.The behavior depends on the arguments in the following way.
- If both this
NDArray
and the otherNDArray
are 2-DNDArray
s, they are multiplied like conventional matrices - If either this
NDArray
or the otherNDArray
is N-DNDArray
, N > 2 , it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If this
NDArray
is 1-DNDArray
, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If other
NDArray
is 1-DNDArray
, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> NDArray array2 = manager.create(new float[] {4f, 1f, 2f, 2f}, new Shape(2, 2)); jshell> array1.matMul(array2); // for 2-D arrays, it is the matrix product ND: (2, 2) cpu() float32 [[4., 1.], [2., 2.], ] jshell> array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.matMul(array2); ND: (2) cpu() float32 [1., 2.] jshell> array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.matMul(array2); ND: (2) cpu() float32 [1., 2.] jshell> array1 = manager.arange(2f * 2f * 4f).reshape(2, 2, 4); jshell> array2 = manager.arange(2f * 2f * 4f).reshape(2, 4, 2); jshell> array1.matMul(array2).get("0, 1, 1"); ND: () cpu() float32 98.
- If both this
-
clip
public NDArray clip(java.lang.Number min, java.lang.Number max)
Clips (limit) the values in thisNDArray
.Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.
Examples
jshell> NDArray array = manager.arange(10f); jshell> array.clip(1, 8); ND: (10) cpu() float32 [1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]
-
flip
public NDArray flip(int... axes)
Returns the reverse order of elements in an array along the given axis.The shape of the array is preserved, but the elements are reordered.
-
transpose
public NDArray transpose()
Returns thisNDArray
with axes transposed.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.transpose(); ND: (2, 2) cpu() float32 [[1., 3.], [2., 4.], ]
-
transpose
public NDArray transpose(int... axes)
Returns thisNDArray
with given axes transposed.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.transpose(1, 0); ND: (2, 2) cpu() float32 [[1., 3.], [2., 4.], ] jshell> array = manager.arange(8f).reshape(2, 2, 2); jshell> array; ND: (2, 2, 2) cpu() float32 [[[0., 1.], [2., 3.], ], [[4., 5.], [6., 7.], ], ] jshell> array.transpose(1, 0, 2); ND: (2, 2, 2) cpu() float32 [[[0., 1.], [4., 5.], ], [[2., 3.], [6., 7.], ], ]
-
broadcast
public NDArray broadcast(Shape shape)
Broadcasts thisNDArray
to be the given shape.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.broadcast(new Shape(2, 2, 2)); ND: (2, 2, 2) cpu() float32 [[[1., 2.], [3., 4.], ], [[1., 2.], [3., 4.], ], ]
-
argMax
public NDArray argMax()
Returns the indices of the maximum values into the flattenedNDArray
.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMax(); ND: () cpu() int64 5.
-
argMax
public NDArray argMax(int axis)
Returns the indices of the maximum values along given axis.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMax(0); ND: (3) cpu() int64 [1, 1, 1] jshell> array.argMax(1); ND: (2) cpu() int64 [2, 2]
-
argMin
public NDArray argMin()
Returns the indices of the minimum values into the flattenedNDArray
.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMin(); ND: () cpu() int64 0.
-
argMin
public NDArray argMin(int axis)
Returns the indices of the minimum values along given axis.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMin(0); ND: (3) cpu() int64 [0, 0, 0] jshell> array.argMin(1); ND: (2) cpu() int64 [0, 0]
-
percentile
public NDArray percentile(java.lang.Number percentile)
Returns percentile for thisNDArray
.- Specified by:
percentile
in interfaceNDArray
- Parameters:
percentile
- the target percentile in range of 0..100- Returns:
- the result
NDArray
-
percentile
public NDArray percentile(java.lang.Number percentile, int[] axes)
Returns median along given dimension(s).- Specified by:
percentile
in interfaceNDArray
- Parameters:
percentile
- the target percentile in range of 0..100axes
- the dimension to calculate percentile for- Returns:
- the result
NDArray
NDArray
-
median
public NDArray median()
Returns median value for thisNDArray
.
-
median
public NDArray median(int[] axes)
Returns median value along given axes.
-
toDense
public NDArray toDense()
Returns a dense representation of the sparseNDArray
.
-
toSparse
public NDArray toSparse(SparseFormat fmt)
Returns a sparse representation ofNDArray
.- Specified by:
toSparse
in interfaceNDArray
- Parameters:
fmt
- theSparseFormat
of thisNDArray
- Returns:
- the result
NDArray
-
nonzero
public NDArray nonzero()
Returns the indices of elements that are non-zero.Note that the behavior is slightly different from numpy.nonzero. Numpy returns a tuple of NDArray, one for each dimension of NDArray. DJL nonzero returns only one
NDArray
with last dimension containing all dimension of indices.Examples
jshell> NDArray array = manager.create(new float[] {1f, 1f, 1f, 0f, 1f}); jshell> array.nonzero(); ND: (4, 1) cpu() int64 [[ 0], [ 1], [ 2], [ 4], ] jshell> array = manager.create(new float[] {3f, 0f, 0f, 0f, 4f, 0f, 5f, 6f, 0f}).reshape(3, 3); jshell> array; ND: (3, 3) cpu() float32 [[3., 0., 0.], [0., 4., 0.], [5., 6., 0.], ] jshell> array.nonzero(); ND: (4, 2) cpu() int64 [[ 0, 0], [ 1, 1], [ 2, 0], [ 2, 1], ]
-
erfinv
public NDArray erfinv()
Returns element-wise inverse gauss error function of theNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {0f, 0.5f, -1f}); jshell> array.erfinv(); ND: (3) cpu() float32 [0., 0.4769, -inf]
-
inverse
public NDArray inverse()
Computes the inverse of squareNDArray
if it exists.
-
norm
public NDArray norm(boolean keepDims)
Returns the norm of thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {-3f, -4f}); jshell> array.norm(true); ND: () cpu() float32 5. jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(true); ND: () cpu() float32 [[5.4772], ]
-
norm
public NDArray norm(int ord, int[] axes, boolean keepDims)
Returns the norm of thisNDArray
.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(2, new int[] {0}, true); ND: (1, 2) cpu() float32 [[3.1623, 4.4721], ] jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(2, new int[] {0}, false); ND: (2) cpu() float32 [3.1623, 4.4721]
- Specified by:
norm
in interfaceNDArray
- Parameters:
ord
- Order of the norm.axes
- If axes contains an integer, it specifies the axis of x along which to compute the vector norms. If axis contains 2 integers, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed.keepDims
- keepDims If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x.- Returns:
- the norm of this
NDArray
-
oneHot
public NDArray oneHot(int depth, float onValue, float offValue, DataType dataType)
Returns a one-hotNDArray
.- The locations represented by indices take value onValue, while all other locations take value offValue.
- If the input
NDArray
is rank N, the output will have rank N+1. The new axis is appended at the end. - If
NDArray
is a scalar the output shape will be a vector of length depth. - If
NDArray
is a vector of length features, the output shape will be features x depth. - If
NDArray
is a matrix with shape [batch, features], the output shape will be batch x features x depth.
Examples
jshell> NDArray array = manager.create(new int[] {1, 0, 2, 0}); jshell> array.oneHot(3, 8f, 1f, array.getDataType()); ND: (4, 3) cpu() int32 [[ 1, 8, 1], [ 8, 1, 1], [ 1, 1, 8], [ 8, 1, 1], ]
- Specified by:
oneHot
in interfaceNDArray
- Parameters:
depth
- Depth of the one hot dimension.onValue
- The value assigned to the locations represented by indices.offValue
- The value assigned to the locations not represented by indices.dataType
- dataType of the output.- Returns:
- one-hot encoding of this
NDArray
- See Also:
- Classification-problems
-
batchDot
public NDArray batchDot(NDArray other)
Batchwise product of thisNDArray
and the otherNDArray
.- batchDot is used to compute dot product of x and y when x and y are data in batch, namely N-D (N greater or equal to 3) arrays in shape of (B0, …, B_i, :, :). For example, given x with shape (B_0, …, B_i, N, M) and y with shape (B_0, …, B_i, M, K), the result array will have shape (B_0, …, B_i, N, K), which is computed by: batch_dot(x,y)[b_0, ..., b_i, :, :] = dot(x[b_0, ..., b_i, :, :], y[b_0, ..., b_i, :, :])
Examples
jshell> NDArray array1 = manager.ones(new Shape(2, 1, 4)); jshell> NDArray array2 = manager.ones(new Shape(2, 4, 6)); jshell> array1.batchDot(array2); ND: (2, 1, 6) cpu() float32 [[[4., 4., 4., 4., 4., 4.], ], [[4., 4., 4., 4., 4., 4.], ], ]
-
getNDArrayInternal
public ai.djl.ndarray.internal.NDArrayEx getNDArrayInternal()
Returns an internal representative of NativeNDArray
.This method should only be used by Engine provider
- Specified by:
getNDArrayInternal
in interfaceNDArray
- Returns:
- an internal representative of Native
NDArray
-
close
public void close()
- Specified by:
close
in interfacejava.lang.AutoCloseable
- Specified by:
close
in interfaceNDArray
- Specified by:
close
in interfaceNDResource
-
toString
public java.lang.String toString()
- Overrides:
toString
in classjava.lang.Object
-
-