Package ai.djl.nn.transformer
Class TransformerEncoderBlock
java.lang.Object
ai.djl.nn.AbstractBaseBlock
ai.djl.nn.AbstractBlock
ai.djl.nn.transformer.TransformerEncoderBlock
- All Implemented Interfaces:
Block
Self-Attention based transformer encoder block.
-
Field Summary
Fields inherited from class ai.djl.nn.AbstractBlock
children, parameters
Fields inherited from class ai.djl.nn.AbstractBaseBlock
inputNames, inputShapes, outputDataTypes, version
-
Constructor Summary
ConstructorsConstructorDescriptionTransformerEncoderBlock
(int embeddingSize, int headCount, int hiddenSize, float dropoutProbability, Function<NDList, NDList> activationFunction) Creates a transformer encoder block. -
Method Summary
Modifier and TypeMethodDescriptionprotected NDList
forwardInternal
(ParameterStore ps, NDList inputs, boolean training, ai.djl.util.PairList<String, Object> params) A helper forBlock.forward(ParameterStore, NDList, boolean, PairList)
after initialization.Shape[]
getOutputShapes
(Shape[] inputShapes) Returns the expected output shapes of the block for the specified input shapes.void
initializeChildBlocks
(NDManager manager, DataType dataType, Shape... inputShapes) Initializes the Child blocks of this block.Methods inherited from class ai.djl.nn.AbstractBlock
addChildBlock, addChildBlock, addChildBlockSingleton, addParameter, getChildren, getDirectParameters
Methods inherited from class ai.djl.nn.AbstractBaseBlock
beforeInitialize, cast, clear, describeInput, forward, forward, forwardInternal, getInputShapes, getOutputDataTypes, getParameters, initialize, isInitialized, loadMetadata, loadParameters, prepare, readInputShapes, saveInputShapes, saveMetadata, saveParameters, setInitializer, setInitializer, setInitializer, toString
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface ai.djl.nn.Block
forward, freezeParameters, freezeParameters, getOutputShapes
-
Constructor Details
-
TransformerEncoderBlock
public TransformerEncoderBlock(int embeddingSize, int headCount, int hiddenSize, float dropoutProbability, Function<NDList, NDList> activationFunction) Creates a transformer encoder block.- Parameters:
embeddingSize
- the embedding size for tokensheadCount
- number of attention blockshiddenSize
- the hidden size for fully connected networksdropoutProbability
- dropout probabilityactivationFunction
- activation function
-
-
Method Details
-
getOutputShapes
Returns the expected output shapes of the block for the specified input shapes.- Parameters:
inputShapes
- the shapes of the inputs- Returns:
- the expected output shapes of the block
-
initializeChildBlocks
Initializes the Child blocks of this block. You need to override this method if your subclass has child blocks. Used to determine the correct input shapes for child blocks based on the requested input shape for this block.- Overrides:
initializeChildBlocks
in classAbstractBaseBlock
- Parameters:
manager
- the manager to use for initializationdataType
- the requested data typeinputShapes
- the expected input shapes for this block
-
forwardInternal
protected NDList forwardInternal(ParameterStore ps, NDList inputs, boolean training, ai.djl.util.PairList<String, Object> params) A helper forBlock.forward(ParameterStore, NDList, boolean, PairList)
after initialization.- Specified by:
forwardInternal
in classAbstractBaseBlock
- Parameters:
ps
- the parameter storeinputs
- the input NDListtraining
- true for a training forward passparams
- optional parameters- Returns:
- the output of the forward pass
-