Class NDArrayAdapter
- All Implemented Interfaces:
BytesSupplier,NDArray,NDResource,AutoCloseable
NDArray that does nothing. This can be used for overriding
the NDArray with only part of the interface implemented.
This interface should only be used for the NDArray implementations that do not plan to
implement a large portion of the interface. For the ones that do, they should directly implement
NDArray so that the unsupported operations are better highlighted in the code.
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionabs()Returns the absolute value of thisNDArrayelement-wise.acos()Returns the inverse trigonometric cosine of thisNDArrayelement-wise.acosh()Returns the inverse hyperbolic cosine of thisNDArrayelement-wise.Adds otherNDArrays to thisNDArrayelement-wise.Adds a number to thisNDArrayelement-wise.Adds otherNDArrays to thisNDArrayelement-wise in place.Adds a number to thisNDArrayelement-wise in place.argMax()Returns the indices of the maximum values into the flattenedNDArray.argMax(int axis) Returns the indices of the maximum values along given axis.argMin()Returns the indices of the minimum values into the flattenedNDArray.argMin(int axis) Returns the indices of the minimum values along given axis.argSort(int axis, boolean ascending) Returns the indices that would sort thisNDArraygiven the axis.asin()Returns the inverse trigonometric sine of thisNDArrayelement-wise.asinh()Returns the inverse hyperbolic sine of thisNDArrayelement-wise.atan()Returns the inverse trigonometric tangent of thisNDArrayelement-wise.Returns the element-wise arc-tangent of this/other choosing the quadrant correctly.atanh()Returns the inverse hyperbolic tangent of thisNDArrayelement-wise.voidAttaches thisNDResourceto the specifiedNDManager.Batchwise product of thisNDArrayand the otherNDArray.batchMatMul(NDArray other) Batch product matrix of thisNDArrayand the otherNDArray.booleanMask(NDArray index, int axis) Returns portion of thisNDArraygiven the index booleanNDArrayalong given axis.Broadcasts thisNDArrayto be the given shape.cbrt()Returns the cube-root of thisNDArrayelement-wise.ceil()Returns the ceiling of thisNDArrayelement-wise.Clips (limit) the values in thisNDArray.voidclose()complex()Convert a general NDArray to its complex math format.conj()Conjugate complex array.booleancontentEquals(NDArray other) booleancontentEquals(Number number) cos()Returns the trigonometric cosine of thisNDArrayelement-wise.cosh()Returns the hyperbolic cosine of thisNDArrayelement-wise.cumProd(int axis) Returns the cumulative product of elements of input in the dimension dim.Returns the cumulative product of elements of input in the dimension dim.cumSum()Returns the cumulative sum of the elements in the flattenedNDArray.cumSum(int axis) Return the cumulative sum of the elements along a given axis.Divides thisNDArrayby the otherNDArrayelement-wise.Divides thisNDArrayby a number element-wise.Divides thisNDArrayby the otherNDArrayelement-wise in place.Divides thisNDArrayby a number element-wise in place.Dot product of thisNDArrayand the otherNDArray.Returns the booleanNDArrayfor element-wise "Equals" comparison.Returns the booleanNDArrayfor element-wise "Equals" comparison.booleanerf()Returns element-wise gauss error function of theNDArray.erfinv()Returns element-wise inverse gauss error function of theNDArray.exp()Returns the exponential value of thisNDArrayelement-wise.expandDims(int axis) Expands theShapeof aNDArray.fft(long length, long axis) Computes the one-dimensional discrete Fourier Transform.fft2(long[] sizes, long[] axes) Computes the two-dimensional Discrete Fourier Transform.flatten()Flattens thisNDArrayinto a 1-DNDArrayin row-major order.flatten(int startDim, int endDim) Flattens thisNDArrayinto a partially flattenNDArray.flip(int... axes) Returns the reverse order of elements in an array along the given axis.floor()Returns the floor of thisNDArrayelement-wise.gammaln()Return the log of the absolute value of the gamma function of thisNDArrayelement-wise.Returns a partialNDArraypointed by the indexed array.Returns a partialNDArraypointed by the indexed array.Returns a partialNDArray.Returns theDataTypeof thisNDArray.Returns theDeviceof thisNDArray.Returns the gradientNDArrayattached to thisNDArray.Returns theNDManagerthat manages this.getName()Returns the name of thisNDArray.ai.djl.ndarray.internal.NDArrayExReturns an internal representative of NativeNDArray.getShape()Returns theShapeof thisNDArray.Returns theSparseFormatof thisNDArray.getUid()Returns unique identifier of thisNDArray.Returns the booleanNDArrayfor element-wise "Greater Than" comparison.Returns the booleanNDArrayfor element-wise "Greater" comparison.Returns the booleanNDArrayfor element-wise "Greater or equals" comparison.Returns the booleanNDArrayfor element-wise "Greater or equals" comparison.booleanReturns true if the gradient calculation is required for thisNDArray.inthashCode()ifft(long length, long axis) Computes the one dimensional inverse discrete Fourier transform.ifft2(long[] sizes, long[] axes) Computes the two-dimensional inverse Discrete Fourier Transform.inverse()Computes the inverse of squareNDArrayif it exists.irfft(long length, long axis) Computes the one dimensional inverse Fourier transform of real-valued input.Returns the booleanNDArraywith valuetruewhere thisNDArray's entries are infinite, orfalsewhere they are not infinite.isNaN()Returns the booleanNDArraywith valuetruewhere thisNDArray's entries are NaN, orfalsewhere they are not NaN.booleanReturnstrueif this NDArray has been released.log()Returns the natural logarithmic value of thisNDArrayelement-wise.log10()Returns the base 10 logarithm of thisNDArrayelement-wise.log2()Returns the base 2 logarithm of thisNDArrayelement-wise.logicalAnd(NDArray other) Returns the truth value of thisNDArrayAND the otherNDArrayelement-wise.Computes the truth value of NOT thisNDArrayelement-wise.Computes the truth value of thisNDArrayOR the otherNDArrayelement-wise.logicalXor(NDArray other) Computes the truth value of thisNDArrayXOR the otherNDArrayelement-wise.logSoftmax(int axis) Applies the softmax function followed by a logarithm.Returns the booleanNDArrayfor element-wise "Less" comparison.Returns the booleanNDArrayfor element-wise "Less" comparison.Returns the booleanNDArrayfor element-wise "Less or equals" comparison.Returns the booleanNDArrayfor element-wise "Less or equals" comparison.Product matrix of thisNDArrayand the otherNDArray.max()Returns the maximum of thisNDArray.max(int[] axes, boolean keepDims) Returns the maximum of thisNDArrayalong given axes.Returns the maximum of thisNDArrayand the otherNDArrayelement-wise.Returns the maximum of thisNDArrayand a number element-wise.mean()Returns the average of thisNDArray.mean(int[] axes, boolean keepDims) Returns the average of thisNDArrayalong given axes.median()Returns median value for thisNDArray.median(int[] axes) Returns median value along given axes.min()Returns the minimum of thisNDArray.min(int[] axes, boolean keepDims) Returns the minimum of thisNDArrayalong given axes.Returns the minimum of thisNDArrayand the otherNDArrayelement-wise.Returns the minimum of thisNDArrayand a number element-wise.Returns element-wise remainder of division.Returns element-wise remainder of division.Returns in place element-wise remainder of division in place.Returns element-wise remainder of division in place.Multiplies thisNDArrayby otherNDArrays element-wise.Multiplies thisNDArrayby a number element-wise.Multiplies thisNDArrayby otherNDArrayelement-wise in place.Multiplies thisNDArrayby a number element-wise in place.neg()Returns the numerical negativeNDArrayelement-wise.negi()Returns the numerical negativeNDArrayelement-wise in place.Returns the booleanNDArrayfor element-wise "Not equals" comparison.Returns the booleanNDArrayfor element-wise "Not equals" comparison.nonzero()Returns the indices of elements that are non-zero.norm(boolean keepDims) Returns the norm of thisNDArray.norm(int ord, int[] axes, boolean keepDims) Returns the norm of thisNDArray.normalize(double p, long dim, double eps) Performs Lp normalization of the array over specified dimension.Returns a one-hotNDArray.Pads thisNDArraywith the givenShape.percentile(Number percentile) Returns percentile for thisNDArray.percentile(Number percentile, int[] axes) Returns median along given dimension(s).Takes the power of thisNDArraywith the otherNDArrayelement-wise.Takes the power of thisNDArraywith a number element-wise.Takes the power of thisNDArraywith the otherNDArrayelement-wise in place.Takes the power of thisNDArraywith a number element-wise in place.prod()Returns the product of thisNDArray.prod(int[] axes, boolean keepDims) Returns the product of thisNDArrayelements over the given axes.Sets the entries ofNDArraypointed by index, according to linear indexing, to be the numbers in value.real()Convert a complex NDArray to its real math format.repeat(int axis, long repeats) Repeats element of thisNDArraythe number of times given repeats along given axis.repeat(long repeats) Repeats element of thisNDArraythe number of times given repeats.repeat(long[] repeats) Repeats element of thisNDArraythe number of times given repeats along each axis.Repeats element of thisNDArrayto match the desired shape.Reshapes thisNDArrayto the givenShape.rfft(long length, long axis) Computes the one dimensional Fourier transform of real-valued input.rotate90(int times, int[] axes) Rotates an array by 90 degrees in the plane specified by axes.round()Returns the round of thisNDArrayelement-wise.Writes all values from the tensor value into self at the indices specified in the index tensor.sequenceMask(NDArray sequenceLength) Sets all elements outside the sequence to 0.sequenceMask(NDArray sequenceLength, float value) Sets all elements outside the sequence to a constant value.voidSets the specified index in thisNDArraywith the given values.voidSets the specified index in thisNDArraywith the given value.voidSets the specific index by a function.voidSets theNDArrayby boolean mask or integer index.voidSets thisNDArrayvalue fromBuffer.voidSets name of thisNDArray.voidsetRequiresGradient(boolean requiresGrad) Attaches a gradientNDArrayto thisNDArrayand marks it soGradientCollector.backward(NDArray)can compute the gradient with respect to it.voidSets the specified scalar in thisNDArraywith the given value.sign()Returns the element-wise sign.signi()Returns the element-wise sign in-place.sin()Returns the trigonometric sine of thisNDArrayelement-wise.sinh()Returns the hyperbolic sine of thisNDArrayelement-wise.softmax(int axis) Applies the softmax function along the given axis.sort()Sorts the flattenedNDArray.sort(int axis) Sorts the flattenedNDArray.split(long[] indices, int axis) Splits thisNDArrayinto multiple sub-NDArrays given indices along given axis.split(long sections, int axis) Splits thisNDArrayinto multiple subNDArrays given sections along the given axis.sqrt()Returns the square root of thisNDArrayelement-wise.square()Returns the square of thisNDArrayelement-wise.squeeze(int[] axes) Removes singleton dimensions at the given axes.stft(long nFft, long hopLength, boolean center, NDArray window, boolean normalize, boolean returnComplex) Computes the Short Time Fourier Transform (STFT).Returns an NDArray equal to this that stop gradient propagation through it.Subtracts the otherNDArrayfrom thisNDArrayelement-wise.Subtracts a number from thisNDArrayelement-wise.Subtracts the otherNDArrayfrom thisNDArrayelement-wise in place.Subtracts a number from thisNDArrayelement-wise in place.sum()Returns the sum of thisNDArray.sum(int[] axes, boolean keepDims) Returns the sum of thisNDArrayalong given axes.Returns a partialNDArraypointed by index according to linear indexing, and the of output is of the same shape as index.tan()Returns the trigonometric tangent of thisNDArrayelement-wise.tanh()Returns the hyperbolic tangent of thisNDArrayelement-wise.voidtempAttach(NDManager manager) Temporarily attaches thisNDResourceto the specifiedNDManager.tile(int axis, long repeats) Constructs aNDArrayby repeating thisNDArraythe number of times given by repeats along given axis.tile(long repeats) Constructs aNDArrayby repeating thisNDArraythe number of times given repeats.tile(long[] repeats) Constructs aNDArrayby repeating thisNDArraythe number of times given by repeats.Constructs aNDArrayby repeating thisNDArraythe number of times to match the desired shape.Converts thisNDArrayfrom radians to degrees element-wise.toDense()Returns a dense representation of the sparseNDArray.Moves thisNDArrayto a differentDevice.topK(int k, int axis, boolean largest, boolean sorted) Returns (values, indices) of the top k values along given axis.Converts thisNDArrayfrom degrees to radians element-wise.toSparse(SparseFormat fmt) Returns a sparse representation ofNDArray.toString()String[]toStringArray(Charset charset) Converts thisNDArrayto a String array with the specified charset.Converts thisNDArrayto a differentDataType.trace(int offset, int axis1, int axis2) Returns the sum along diagonals of thisNDArray.Returns thisNDArraywith axes transposed.transpose(int... axes) Returns thisNDArraywith given axes transposed.trunc()Returns the truncated value of thisNDArrayelement-wise.Returns the unique elements of the input tensor.Computes this * log(other).Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, waitMethods inherited from interface ai.djl.ndarray.BytesSupplier
getAsBytes, getAsObject, getAsStringMethods inherited from interface ai.djl.ndarray.NDArray
all, allClose, allClose, any, argSort, argSort, booleanMask, broadcast, concat, concat, copyTo, countNonzero, countNonzero, duplicate, encode, fft, fft2, get, get, get, get, get, getBoolean, getByte, getDouble, getFloat, getInt, getLong, getResourceNDArrays, getScalar, getUint8, ifft, ifft2, intern, irfft, isEmpty, isScalar, isSparse, like, max, mean, min, none, norm, norm, norm, normalize, normalize, oneHot, oneHot, onesLike, prod, reshape, rfft, scaleGradient, set, set, set, set, set, shapeEquals, size, size, split, split, squeeze, squeeze, stack, stack, stft, sum, swapAxes, take, toArray, toBooleanArray, toByteArray, toByteBuffer, toByteBuffer, toDebugString, toDebugString, toDebugString, toDoubleArray, toFloatArray, toIntArray, toLongArray, topK, toShortArray, toStringArray, toUint8Array, toUnsignedIntArray, toUnsignedShortArray, trace, trace, unique, unique, zerosLikeMethods inherited from interface ai.djl.ndarray.NDResource
detach, returnResource
-
Field Details
-
manager
-
alternativeManager
-
alternativeArray
-
shape
-
dataType
-
name
-
isClosed
protected boolean isClosed -
uid
-
-
Constructor Details
-
NDArrayAdapter
-
-
Method Details
-
getManager
Returns theNDManagerthat manages this.- Specified by:
getManagerin interfaceNDResource- Returns:
- the
NDManagerthat manages this.
-
attach
Attaches thisNDResourceto the specifiedNDManager.Attached resource will be closed when the
NDManageris closed.- Specified by:
attachin interfaceNDResource- Parameters:
manager- theNDManagerto be attached to
-
tempAttach
Temporarily attaches thisNDResourceto the specifiedNDManager.Attached resource will be returned to the original manager when the
NDManageris closed.- Specified by:
tempAttachin interfaceNDResource- Parameters:
manager- theNDManagerto be attached to
-
getSparseFormat
Returns theSparseFormatof thisNDArray.- Specified by:
getSparseFormatin interfaceNDArray- Returns:
- the
SparseFormatof thisNDArray
-
getName
Returns the name of thisNDArray. -
setName
Sets name of thisNDArray. -
getUid
Returns unique identifier of thisNDArray. -
getDevice
-
getDataType
Returns theDataTypeof thisNDArray.DataTypeis a definition of the precision level of theNDArray. All values inside the sameNDArraywould have the sameDataType.- Specified by:
getDataTypein interfaceNDArray- Returns:
- the
DataTypeof thisNDArray
-
getShape
-
toDevice
Moves thisNDArrayto a differentDevice. -
toType
Converts thisNDArrayto a differentDataType. -
setRequiresGradient
public void setRequiresGradient(boolean requiresGrad) Attaches a gradientNDArrayto thisNDArrayand marks it soGradientCollector.backward(NDArray)can compute the gradient with respect to it.- Specified by:
setRequiresGradientin interfaceNDArray- Parameters:
requiresGrad- ifNDArrayrequires gradient or not
-
getGradient
Returns the gradientNDArrayattached to thisNDArray.- Specified by:
getGradientin interfaceNDArray- Returns:
- the gradient
NDArray
-
hasGradient
public boolean hasGradient()Returns true if the gradient calculation is required for thisNDArray.- Specified by:
hasGradientin interfaceNDArray- Returns:
- true if the gradient calculation is required for this
NDArrayelse false
-
stopGradient
Returns an NDArray equal to this that stop gradient propagation through it.- Specified by:
stopGradientin interfaceNDArray- Returns:
- an NDArray equal to this that stops gradient propagation through it
-
toStringArray
Converts thisNDArrayto a String array with the specified charset.This method is only applicable to the String typed NDArray and not for printing purpose
- Specified by:
toStringArrayin interfaceNDArray- Parameters:
charset- to charset for the string- Returns:
- Array of Strings
-
gather
Returns a partialNDArraypointed by the indexed array.out[i][j][k] = input[index[i][j][k]][j][k] # if axis == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if axis == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if axis == 2
-
gatherNd
Returns a partialNDArraypointed by the indexed array.Given NDArray arr and NDArray idx. idx is the following structure: \( idx = [ idx[0, ...], idx[1, ...],..., idx[indexingDepth,...] ] \) corresponding to x, y, z index, i.e. [idx_x, idx_y, idx_z, ...].
So indexingDepth smaller than or equal to data.shape[0] If indexingDepth is smaller than data.shape[0], for instance, data.shape[0]=3, i.e. x,y,z but indexingDepth = 2, i.e. [idx_x, idx_y], then the tail co-rank = data.shape[0] - indexingDepth will be kept.
With it, the output shape = idx_y.shape appended by data.shape[indexingDepth:] mx.symbol.gather_nd
-
take
Returns a partialNDArraypointed by index according to linear indexing, and the of output is of the same shape as index. -
put
Sets the entries ofNDArraypointed by index, according to linear indexing, to be the numbers in value.Value has to be of the same shape as index.
-
scatter
Writes all values from the tensor value into self at the indices specified in the index tensor.This is the reverse operation of the manner described in gather(). self[index[i][j][k]][j][k] = value[i][j][k] # if axis == 0 self[i][index[i][j][k]][k] = value[i][j][k] # if axis == 1 self[i][j][index[i][j][k]] = value[i][j][k] # if axis == 2
torch.Tensor.scatter_- Specified by:
scatterin interfaceNDArray- Parameters:
index- the indices of elements to scatter, can be either empty or of the same dimensionality as value. When empty, the operation returns self unchangedvalue- the source element(s) to scatteraxis- the axis along which to index- Returns:
- the NDArray with updated values
-
get
Returns a partialNDArray. -
set
Sets thisNDArrayvalue fromBuffer. -
set
Sets the specified index in thisNDArraywith the given values. -
set
Sets the specified index in thisNDArraywith the given value. -
set
Sets the specific index by a function. -
set
Sets theNDArrayby boolean mask or integer index. -
setScalar
Sets the specified scalar in thisNDArraywith the given value. -
booleanMask
Returns portion of thisNDArraygiven the index booleanNDArrayalong given axis.- Specified by:
booleanMaskin interfaceNDArray- Parameters:
index- booleanNDArraymaskaxis- an integer that represents the axis ofNDArrayto mask from- Returns:
- the result
NDArray
-
sequenceMask
Sets all elements outside the sequence to a constant value.This function takes an n-dimensional input array of the form [batch_size, max_sequence_length, ....] and returns an array of the same shape. Parameter
sequenceLengthis used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size].- Specified by:
sequenceMaskin interfaceNDArray- Parameters:
sequenceLength- used to handle variable-length sequencesvalue- the constant value to be set- Returns:
- the result
NDArray
-
sequenceMask
Sets all elements outside the sequence to 0.This function takes an n-dimensional input array of the form [batch_size, max_sequence_length, ....] and returns an array of the same shape. Parameter
sequenceLengthis used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size].- Specified by:
sequenceMaskin interfaceNDArray- Parameters:
sequenceLength- used to handle variable-length sequences- Returns:
- the result
NDArray
-
contentEquals
Returnstrueif all elements in thisNDArrayare equal to theNumber.Examples
jshell> NDArray array = manager.ones(new Shape(2, 3)); jshell> array.contentEquals(1); // return true instead of boolean NDArray true
- Specified by:
contentEqualsin interfaceNDArray- Parameters:
number- the number to compare- Returns:
- the boolean result
-
contentEquals
Returnstrueif all elements in thisNDArrayare equal to the otherNDArray.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(2, 3); jshell> NDArray array2 = manager.create(new float[] {0f, 1f, 2f, 3f, 4f, 5f}, new Shape(2, 3)); jshell> array1.contentEquals(array2); // return true instead of boolean NDArray true- Specified by:
contentEqualsin interfaceNDArray- Parameters:
other- the otherNDArrayto compare- Returns:
- the boolean result
-
eq
Returns the booleanNDArrayfor element-wise "Equals" comparison.Examples
jshell> NDArray array = manager.ones(new Shape(1)); jshell> array.eq(1); ND: (1) cpu() boolean [ true]
-
eq
Returns the booleanNDArrayfor element-wise "Equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {0f, 1f, 3f}); jshell> NDArray array2 = manager.arange(3f); jshell> array1.eq(array2); ND: (3) cpu() boolean [ true, true, false] -
neq
Returns the booleanNDArrayfor element-wise "Not equals" comparison.Examples
jshell> NDArray array = manager.arange(4f).reshape(2, 2); jshell> array.neq(1); ND: (2, 2) cpu() boolean [[ true, false], [ true, true], ]
-
neq
Returns the booleanNDArrayfor element-wise "Not equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {1f, 3f}); jshell> array1.neq(array2); ND: (2) cpu() boolean [false, true] jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {1f, 3f, 1f, 4f}, new Shape(2, 2)); jshell> array1.neq(array2); // broadcasting ND: (2, 2) cpu() boolean [[false, true], [false, true], ] -
gt
Returns the booleanNDArrayfor element-wise "Greater" comparison.Examples
jshell> NDArray array = manager.create(new float[] {4f, 2f}); jshell> array.gt(2f); ND: (2) cpu() boolean [ true, false] -
gt
Returns the booleanNDArrayfor element-wise "Greater Than" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.neq(array2); ND: (2) cpu() boolean [ true, false] -
gte
Returns the booleanNDArrayfor element-wise "Greater or equals" comparison.jshell> NDArray array = manager.create(new float[] {4f, 2f}); jshell> array.gte(2f); ND: (2) cpu() boolean [ true, true] -
gte
Returns the booleanNDArrayfor element-wise "Greater or equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.gte(array2); ND: (2) cpu() boolean [ true, true] -
lt
Returns the booleanNDArrayfor element-wise "Less" comparison.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.lt(2f); ND: (2) cpu() boolean [ true, false] -
lt
Returns the booleanNDArrayfor element-wise "Less" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.lt(array2); ND: (2) cpu() boolean [ true, false] -
lte
Returns the booleanNDArrayfor element-wise "Less or equals" comparison.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.lte(2f); ND: (2) cpu() boolean [ true, true] -
lte
Returns the booleanNDArrayfor element-wise "Less or equals" comparison.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {2f, 2f}); jshell> array1.lte(array2); ND: (2) cpu() boolean [ true, true] -
add
Adds a number to thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.add(2f); ND: (2) cpu() float32 [3., 4.] -
add
Adds otherNDArrays to thisNDArrayelement-wise.The shapes of this
NDArrayand otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.add(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.], ]
-
sub
Subtracts a number from thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.sub(2f); ND: (2) cpu() float32 [-1., 0.] -
sub
Subtracts the otherNDArrayfrom thisNDArrayelement-wise.The shapes of this
NDArrayand otherNDArrays must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9).reshape(3, 3); jshell> NDArray array2 = manager.arange(3); jshell> array1.sub(array2); // broadcasting ND: (3, 3) cpu() float32 [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ]
-
mul
Multiplies thisNDArrayby a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.mul(3f); ND: (2) cpu() float32 [3., 6.] -
mul
Multiplies thisNDArrayby otherNDArrays element-wise.The shapes of this
NDArrayand otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.mul(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ]
-
div
Divides thisNDArrayby a number element-wise.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.div(4f); ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ]
-
div
Divides thisNDArrayby the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.ones(new Shape(3)).mul(10); jshell> array1.div(array2); // broadcasting ND: (3, 3) cpu() float32 [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ]
-
mod
Returns element-wise remainder of division.Examples
jshell> NDArray array = manager.arange(7f); jshell> array.mod(5f); ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.]
-
mod
Returns element-wise remainder of division.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 7f}); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.mod(array2); ND: (2) cpu() float32 [0., 1.] -
pow
Takes the power of thisNDArraywith a number element-wise.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.pow(4f); ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.]
-
pow
Takes the power of thisNDArraywith the otherNDArrayelement-wise.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(3, 2); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.pow(array2); // broadcasting ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ] -
addi
Adds a number to thisNDArrayelement-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.addi(2f); ND: (2) cpu() float32 [3., 4.] jshell> array; ND: (2) cpu() float32 [3., 4.] -
addi
Adds otherNDArrays to thisNDArrayelement-wise in place.The shapes of this
NDArrayand otherNDArrays must be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f}); jshell> NDArray array2 = manager.create(new float[] {3f, 4f}); jshell> array1.addi(array2); ND: (2) cpu() float32 [4., 6.] jshell> array; ND: (2) cpu() float32 [4., 6.] -
subi
Subtracts a number from thisNDArrayelement-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.subi(2f); ND: (2) cpu() float32 [-1., 0.] jshell> array; ND: (2) cpu() float32 [-1., 0.] -
subi
Subtracts the otherNDArrayfrom thisNDArrayelement-wise in place.The shapes of this
NDArrayand otherNDArrays must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.subi(array2); // broadcasting ND: (3, 3) cpu() float32 [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ] jshell> array1; [[0., 0., 0.], [3., 3., 3.], [6., 6., 6.], ]
-
muli
Multiplies thisNDArrayby a number element-wise in place.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array.muli(3f); ND: (2) cpu() float32 [3., 6.] jshell> array; ND: (2) cpu() float32 [3., 6.] -
muli
Multiplies thisNDArrayby otherNDArrayelement-wise in place.The shapes of this
NDArrayand otherNDArrays must be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.arange(3f); jshell> array1.muli(array2); // broadcasting ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ] jshell> array1; ND: (3, 3) cpu() float32 [[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.], ]
-
divi
Divides thisNDArrayby a number element-wise in place.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.divi(4f); ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ] jshell> array; ND: (5) cpu() float32 [0. , 0.25, 0.5 , 0.75, 1. ]
-
divi
Divides thisNDArrayby the otherNDArrayelement-wise in place.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.arange(9f).reshape(3, 3); jshell> NDArray array2 = manager.ones(new Shape(3)).mul(10); jshell> array1.divi(array2); // broadcasting ND: (3, 3) cpu() float32 [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ] jshell> array1; [[0. , 0.1, 0.2], [0.3, 0.4, 0.5], [0.6, 0.7, 0.8], ]
-
modi
Returns element-wise remainder of division in place.Examples
jshell> NDArray array = manager.arange(7f); jshell> array.modi(5f); ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.] jshell> array; ND: (7) cpu() float32 [0., 1., 2., 3., 4., 0., 1.]
-
modi
Returns in place element-wise remainder of division in place.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {4f, 7f}); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.modi(array2); ND: (2) cpu() float32 [0., 1.] jshell> array1; ND: (2) cpu() float32 [0., 1.] -
powi
Takes the power of thisNDArraywith a number element-wise in place.Examples
jshell> NDArray array = manager.arange(5f); jshell> array.powi(4f); ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.] jshell> array; ND: (6) cpu() float32 [ 0., 1., 8., 27., 64., 125.]
-
powi
Takes the power of thisNDArraywith the otherNDArrayelement-wise in place.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.arange(6f).reshape(3, 2); jshell> NDArray array2 = manager.create(new float[] {2f, 3f}); jshell> array1.powi(array2); // broadcasting ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ] jshell> array1; ND: (3, 2) cpu() float32 [[ 0., 1.], [ 4., 27.], [ 16., 125.], ] -
sign
Returns the element-wise sign. -
signi
Returns the element-wise sign in-place. -
maximum
Returns the maximum of thisNDArrayand a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f, 4f}); jshell> array.maximum(3f); ND: (3) cpu() float32 [3., 3., 4.] -
maximum
Returns the maximum of thisNDArrayand the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {2f, 3f, 4f}); jshell> NDArray array2 = manager.create(new float[] {1f, 5f, 2f}); jshell> array1.maximum(array2); ND: (3) cpu() float32 [2., 5., 4.] jshell> NDArray array1 = manager.eye(2); jshell> NDArray array2 = manager.create(new float[] {0.5f, 2f}); jshell> array1.maximum(array2); // broadcasting ND: (2, 2) cpu() float32 [[1. , 2. ], [0.5, 2. ], ] -
minimum
Returns the minimum of thisNDArrayand a number element-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f, 4f}); jshell> array.minimum(3f); ND: (3) cpu() float32 [2., 3., 3.] -
minimum
Returns the minimum of thisNDArrayand the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new float[] {2f, 3f, 4f}); jshell> NDArray array2 = manager.create(new float[] {1f, 5f, 2f}); jshell> array1.minimum(array2); ND: (3) cpu() float32 [1., 3., 2.] jshell> NDArray array1 = manager.eye(2); jshell> NDArray array2 = manager.create(new float[] {0.5f, 2f}); jshell> array1.minimum(array2); // broadcasting ND: (2, 2) cpu() float32 [[0.5, 0. ], [0. , 1. ], ] -
neg
Returns the numerical negativeNDArrayelement-wise.jshell> NDArray array = manager.arange(5f); jshell> array.neg(); ND: (5) cpu() float32 [-0., -1., -2., -3., -4.]
-
negi
Returns the numerical negativeNDArrayelement-wise in place.jshell> NDArray array = manager.arange(5f); jshell> array.negi(); jshell> array; ND: (5) cpu() float32 [-0., -1., -2., -3., -4.]
-
abs
Returns the absolute value of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1f, -2f}); jshell> array.abs(); ND: (2) cpu() float32 [1., 2.] -
square
Returns the square of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {2f, -3f}); jshell> array.square(); ND: (2) cpu() float32 [4., 9.] -
sqrt
Returns the square root of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {4f}); jshell> array.sqrt(); ND: (1) cpu() float32 [2., ] -
cbrt
Returns the cube-root of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {1f, 8f, 27f}); jshell> array.cbrt(); ND: (3) cpu() float32 [1., 2., 3.] -
floor
Returns the floor of thisNDArrayelement-wise.The floor of the scalar x is the largest integer i, such that i <= x.
Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.floor(); ND: (7) cpu() float32 [-2., -2., -1., 0., 1., 1., 2.] -
ceil
Returns the ceiling of thisNDArrayelement-wise.The ceil of the scalar x is the smallest integer i, such that i >= x.
Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.ceil(); ND: (7) cpu() float32 [-1., -1., -0., 1., 2., 2., 2.] -
round
Returns the round of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.round(); ND: (7) cpu() float32 [-2., -2., -0., 0., 2., 2., 2.] -
trunc
Returns the truncated value of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {-1.7f, -1.5f, -0.2f, 0.2f, 1.5f, 1.7f, 2.0f}); jshell> array.trunc(); ND: (7) cpu() float32 [-1., -1., -0., 0., 1., 1., 2.] -
exp
Returns the exponential value of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {0f, 2.5f}); jshell> array.exp(); ND: (2) cpu() float32 [ 1. , 12.1825] -
gammaln
Return the log of the absolute value of the gamma function of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {0.5f, 1f, 1.5f}); jshell> array.gammaln(); ND: (2) cpu() float32 [ 0.5724, 0.0000, -0.1208] -
log
Returns the natural logarithmic value of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {0f, 2.5f}); jshell> array.log(); ND: (2) cpu() float32 [ -inf, 0.9163] -
log10
Returns the base 10 logarithm of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {1000f, 1f, 150f}); jshell> array.log10(); ND: (3) cpu() float32 [3. , 0. , 2.1761] -
log2
Returns the base 2 logarithm of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new float[] {8, 1f, 5f}); jshell> array.log2(); ND: (3) cpu() float32 [3. , 0. , 2.3219] -
sin
Returns the trigonometric sine of thisNDArrayelement-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new float[] {0f, 30f, 45f, 60f, 90f}); jshell> array = array.mul(Math.PI).div(180f); jshell> array.sin(); ND: (5) cpu() float32 [0. , 0.5 , 0.7071, 0.866 , 1. ] -
cos
Returns the trigonometric cosine of thisNDArrayelement-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI/2, Math.PI}); jshell> array.cos(); ND: (3) cpu() float64 [ 1.0000000e+00, 6.1232340e-17, -1.0000000e+00], -
tan
Returns the trigonometric tangent of thisNDArrayelement-wise.The input should be in radians (2 Pi radians equals 360 degrees).
Examples
jshell> NDArray array = manager.create(new double[] {-Math.PI, Math.PI/2, Math.PI}); jshell> array.tan(); ND: (3) cpu() float64 [ 1.2246468e-16, 1.6331239e+16, -1.2246468e-16], -
asin
Returns the inverse trigonometric sine of thisNDArrayelement-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {1f, -1f, 0f}); jshell> array.asin(); ND: (3) cpu() float64 [ 1.5708, -1.5708, 0. ] -
acos
Returns the inverse trigonometric cosine of thisNDArrayelement-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {1f, -1f}); jshell> array.acos(); ND: (2) cpu() float64 [0. , 3.1416] -
atan
Returns the inverse trigonometric tangent of thisNDArrayelement-wise.The input should be in the range [-1, 1]. The output is in the closed interval of [-Pi/2, Pi/2].
Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f}); jshell> array.atan(); ND: (2) cpu() float64 [0. , 0.7854] -
atan2
Returns the element-wise arc-tangent of this/other choosing the quadrant correctly.Examples
jshell> NDArray x = manager.create(new float[] {0f, 1f}); jshell> NDArray y = manager.create(new float[] {0f, -6f}); jshell> x.atan2(y); ND: (2) cpu() float64 [0. , 2.9764] -
sinh
Returns the hyperbolic sine of thisNDArrayelement-wise.sinh(x)=0.5*(exp(x) - exp(-x))
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.sinh(); ND: (2) cpu() float64 [ 0. , 11.5487] -
cosh
Returns the hyperbolic cosine of thisNDArrayelement-wise.cosh(x)=0.5*(exp(x)+exp(-x))
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.cosh(); ND: (2) cpu() float64 [ 1. , 11.592 ] -
tanh
Returns the hyperbolic tangent of thisNDArrayelement-wise.tanh(x)=sinh(x)/cosh(x)
Examples
jshell> NDArray array = manager.create(new double[] {0, Math.PI}); jshell> array.tanh(); ND: (2) cpu() float64 [0. , 0.9963] -
asinh
Returns the inverse hyperbolic sine of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new double[] {Math.E, 10}); jshell> array.asinh(); ND: (2) cpu() float64 [1.7254, 2.9982] -
acosh
Returns the inverse hyperbolic cosine of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new double[] {Math.E, 10}); jshell> array.acosh(); ND: (2) cpu() float64 [1.6575, 2.9932] -
atanh
Returns the inverse hyperbolic tangent of thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new double[] {0, -0.5}); jshell> array.atanh(); ND: (2) cpu() float64 [ 0. , -0.5493] -
toDegrees
Converts thisNDArrayfrom radians to degrees element-wise.Examples
jshell> NDArray array = manager.arange(6f).mul(Math.PI / 3); jshell> array.toDegrees(); ND: (6) cpu() float32 [ 0., 60., 120., 180., 240., 300.]
-
toRadians
Converts thisNDArrayfrom degrees to radians element-wise.Examples
jshell> NDArray array = manager.arange(6f).mul(60); jshell> array.toRadians(); ND: (6) cpu() float32 [0. , 1.0472, 2.0944, 3.1416, 4.1888, 5.236 ]
-
max
Returns the maximum of thisNDArray.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.max(); // Maximum of the flattened array ND: () cpu() float32 3. jshell> array.max().getFloat() // Use getFloat() to get native float 3.0
-
max
Returns the maximum of thisNDArrayalong given axes.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.max(new int[]{0}, true); // Maximum along the first axis and keep dimension ND: (1, 2) cpu() float32 [[2., 3.], ] jshell> array.max(new int[]{1}, true); // Maximum along the second axis and keep dimension ND: (2, 1) cpu() float32 [[1.], [3.], ] -
min
Returns the minimum of thisNDArray.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.min(); // Minimum of the flattened array ND: () cpu() float32 0. jshell> array.min().getFloat(); // Use getFloat() to get native float 0.0
-
min
Returns the minimum of thisNDArrayalong given axes.Examples
jshell> NDArray array = manager.arange(4f).reshape(2,2); jshell> array ND: (2, 2) cpu() float32 [[0., 1.], [2., 3.], ] jshell> array.min(new int[]{0}, true) // Minimum along the first axis and keep dimension ND: (1, 2) cpu() float32 [[0., 1.], ] jshell> array.min(new int[]{1}, true) // Minimum along the second axis and keep dimension ND: (2, 1) cpu() float32 [[0.], [2.], ] -
sum
Returns the sum of thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {0.5f, 1.5f}); jshell> array.sum(); ND: () cpu() float32 2. jshell> array.sum().getFloat(); // Use getFloat() to get native float 2.0 jshell> NDArray array = manager.create(new float[] {0f, 1f, 0f, 5f}, new Shape(2, 2)); jshell> array.sum(); ND: () cpu() float32 6. -
sum
Returns the sum of thisNDArrayalong given axes.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 0f, 5f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[0., 1.], [0., 5.], ] jshell> array.sum(new int[] {0}, true); ND: (1, 2) cpu() float32 [[0., 6.], ] jshell> array.sum(new int[] {1}, true); ND: (2, 2) cpu() float32 [[0., 1.], [0., 5.], ] -
cumProd
Returns the cumulative product of elements of input in the dimension dim. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. [x1, x1 * x2, x1 * x2 *x3 ...] -
cumProd
Returns the cumulative product of elements of input in the dimension dim. For example, if input is a vector of size N, the result will also be a vector of size N, with elements. [x1, x1 * x2, x1 * x2 *x3 ...] -
prod
Returns the product of thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f}); jshell> array.prod(); ND: () cpu() float32 6. jshell> array.prod().getFloat(); // Use getFloat to get native float 6.0 jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.prod(); ND: () cpu() float32 24. -
prod
Returns the product of thisNDArrayelements over the given axes.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.prod(new int[] {0}, true); ND: (1, 2) cpu() float32 [[3., 8.], ] jshell> array.prod(new int[] {1}, true); ND: (2, 1) cpu() float32 [[ 2.], [12.], ] -
mean
Returns the average of thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {2f, 3f}); jshell> array.mean(); ND: () cpu() float32 2.5 jshell> array.mean().getFloat(); // Use getFloat() to get native float 2.5 jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.mean(); ND: () cpu() float32 2.5 -
mean
Returns the average of thisNDArrayalong given axes.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.mean(new int[] {0}, true); ND: (1, 2) cpu() float32 [[2., 3.], ] jshell> array.mean(new int[] {1}, true); ND: (2, 1) cpu() float32 [[1.5], [3.5], ] -
normalize
Performs Lp normalization of the array over specified dimension.Examples
jshell> NDArray array = manager.create(new float[] {1, 2, 3, 4, 5, 6}, new Shape(2, 3)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.normalize(2, 1, 1e-12); ND: (2, 3) cpu() float32 [[0.2673, 0.5345, 0.8018], [0.4558, 0.5698, 0.6838], ] -
rotate90
Rotates an array by 90 degrees in the plane specified by axes.Rotation direction is from the first towards the second axis.
-
trace
Returns the sum along diagonals of thisNDArray.If this
NDArrayis 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,i+offset] for all i. If thisNDArrayhas more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-arrays whose traces are returned. TheShapeof the resulting array is the same as thisNDArraywith axis1 and axis2 removed.Examples
jshell> NDArray array = manager.arange(8f).reshape(2, 2, 2); jshell> array; ND: (2, 2, 2) cpu() float32 [[[0., 1.], [2., 3.], ], [[4., 5.], [6., 7.], ], ] jshell> array.trace(1,1,2); ND: (2) cpu() float32 [1., 5.]
- Specified by:
tracein interfaceNDArray- Parameters:
offset- offset of the diagonal from the main diagonal. Can be both positive and negative.axis1- axes to be used as the first axis of the 2-D sub-arrays from which the diagonals should be takenaxis2- axes to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken- Returns:
- the sum along diagonals of this
NDArray
-
split
Splits thisNDArrayinto multiple subNDArrays given sections along the given axis.Examples
jshell> NDArray array = manager.arange(18f).reshape(2, 9); jshell> array; ND: (2, 9) cpu() float32 [[ 0., 1., 2., 3., 4., 5., 6., 7., 8.], [ 9., 10., 11., 12., 13., 14., 15., 16., 17.], ] jshell> array.split(3, 1).forEach(System.out::println); ND: (2, 3) cpu() float32 [[ 0., 1., 2.], [ 9., 10., 11.], ] ND: (2, 3) cpu() float32 [[ 3., 4., 5.], [12., 13., 14.], ] ND: (2, 3) cpu() float32 [[ 6., 7., 8.], [15., 16., 17.], ]
-
split
Splits thisNDArrayinto multiple sub-NDArrays given indices along given axis.Examples
jshell> NDArray array = manager.arange(18f).reshape(2, 9); jshell> array; ND: (2, 9) cpu() float32 [[ 0., 1., 2., 3., 4., 5., 6., 7., 8.], [ 9., 10., 11., 12., 13., 14., 15., 16., 17.], ] jshell> array.split(new int[] {2,4,5}, 1).forEach(System.out::println); ND: (2, 2) cpu() float32 [[ 0., 1.], [ 9., 10.], ] ND: (2, 2) cpu() float32 [[ 2., 3.], [11., 12.], ] ND: (2, 1) cpu() float32 [[ 4.], [13.], ] ND: (2, 4) cpu() float32 [[ 5., 6., 7., 8.], [14., 15., 16., 17.], ]- Specified by:
splitin interfaceNDArray- Parameters:
indices- the entries indicate where along axis thisNDArrayis split. If an index exceeds the dimension of thisNDArrayalong axis, an empty sub-array is returned correspondinglyaxis- the axis to split along- Returns:
- an
NDListwith numOutputsNDArrays withShape(this.shape.axis /= axis)
-
flatten
Flattens thisNDArrayinto a 1-DNDArrayin row-major order.To flatten in column-major order, first transpose this
NDArrayExamples
jshell> NDArray array = manager.create(new float[]{1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.flatten(); ND: (4) cpu() float32 [1., 2., 3., 4.] -
flatten
Flattens thisNDArrayinto a partially flattenNDArray.Examples
jshell> NDArray array = manager.create(new float[]{1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f}, new Shape(2, 2, 2)); jshell> array.flatten(0, 1); ND: (4) cpu() float32 [[1., 2], [3., 4.], [5., 6.], [7., 8.]] -
fft
Computes the one-dimensional discrete Fourier Transform. -
ifft
Computes the one dimensional inverse discrete Fourier transform. -
rfft
Computes the one dimensional Fourier transform of real-valued input. -
irfft
Computes the one dimensional inverse Fourier transform of real-valued input. -
stft
public NDArray stft(long nFft, long hopLength, boolean center, NDArray window, boolean normalize, boolean returnComplex) Computes the Short Time Fourier Transform (STFT).- Specified by:
stftin interfaceNDArray- Parameters:
nFft- size of Fourier transformhopLength- the distance between neighboring sliding window frames. Default can be: floor(n_fft / 4)center- whether to pad input on both sides.window- Desired window to use. Recommend for HanningWindownormalize- controls whether to return the normalized STFT resultsreturnComplex- whether to return a complex tensor, or a real tensor with an extra last dimension for the real and imaginary components.- Returns:
- A NDArray containing the STFT result with shape described above
-
fft2
Computes the two-dimensional Discrete Fourier Transform. -
pad
Pads thisNDArraywith the givenShape.Examples
NDArray array = manager.zeros(3, 3, 4, 2); array.pad(new Shape(1, 1), 0); # pad last dim by 1 on each side array.getShape() => (3, 3, 4, 4)
-
ifft2
Computes the two-dimensional inverse Discrete Fourier Transform. -
reshape
Reshapes thisNDArrayto the givenShape.You can reshape it to match another NDArray by calling
a.reshape(b.getShape())Examples
jshell> NDArray array = manager.arange(6f); jshell> array; ND: (6) cpu() float32 [0., 1., 2., 3., 4., 5.] jshell> array.reshape(new Shape(2, 3)); ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ]
-
expandDims
Expands theShapeof aNDArray.Inserts a new axis that will appear at the axis position in the expanded
NDArrayshape.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f}); jshell> array; ND: (2) cpu() float32 [1., 2.] jshell> array.expandDims(0); ND: (1, 2) cpu() float32 [[1., 2.], ] jshell> array.expandDims(1); ND: (2, 1) cpu() float32 [[1.], [2.], ]- Specified by:
expandDimsin interfaceNDArray- Parameters:
axis- the position in the expanded axes where the new axis is placed- Returns:
- the result
NDArray. The number of dimensions is one greater than that of theNDArray
-
squeeze
Removes singleton dimensions at the given axes.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}, new Shape(1, 3, 1)); jshell> array; ND: (1, 3, 1) cpu() float32 [[[0.], [1.], [2.], ], ] jshell> array.squeeze(new int[] {0, 2}); ND: (3) cpu() float32 [0., 1., 2.] -
unique
Returns the unique elements of the input tensor.Examples
jshell> NDArray array = manager.create(new float[] {3f, 1f, 2f, 3f, 1f, 2f, 1f, 3f, 2f}, new Shape(3, 3)); jshell> array; ND: (3, 3) cpu() float32 [[[3., 1., 2.], [3., 1., 2.], [1., 3., 2.], ], ] jshell> NDList output = array.unique(0, true, true, true); jshell> output.get(0); jshell> output.get(1); jshell> output.get(2); ND: (2, 3) cpu() float32 [[1., 3., 2.], [3., 1., 2.], ] ND: (3) cpu() int64 [ 1, 1, 0] ND: (2) cpu() int64 [ 1, 2]- Specified by:
uniquein interfaceNDArray- Parameters:
dim- the dimension to apply uniquesorted- whether to sort the unique elements in ascending order before returning as outputreturnInverse- return the indices which, fed into the output unique array as indices, will recover the original arrayreturnCounts- return the counts for each unique element- Returns:
- An
NDListcontaining: output (Tensor): the output list of unique elements or low-rank tensors. inverse_indices (Tensor): (optional) if return_inverse is True, there will be an additional returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor. counts (Tensor): (optional) if return_counts is True, there will be an additional returned tensor (same shape as output or output.size(dim), if dim was specified) representing the number of occurrences for each unique value or tensor.
-
logicalAnd
Returns the truth value of thisNDArrayAND the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new boolean[] {true}); jshell> NDArray array2 = manager.create(new boolean[] {false}); jshell> array1.logicalAnd(array2); ND: (1) cpu() boolean [false] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalAnd(array2); ND: (2) cpu() boolean [false, false]jshell> NDArray array = manager.arange(5f); jshell> array.gt(1).logicalAnd(array.lt(4)); ND: (5) cpu() boolean [false, false, true, true, false]
- Specified by:
logicalAndin interfaceNDArray- Parameters:
other- the otherNDArrayto operate on- Returns:
- the boolean
NDArrayof the logical AND operation applied to the elements of thisNDArrayand the otherNDArray
-
logicalOr
Computes the truth value of thisNDArrayOR the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array1 = manager.create(new boolean[] {true}); jshell> NDArray array2 = manager.create(new boolean[] {false}); jshell> array1.logicalOr(array2); ND: (1) cpu() boolean [ true] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalOr(array2); ND: (2) cpu() boolean [ true, false]jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalOr(array.gt(3)); ND: (5) cpu() boolean [ true, false, false, false, true]
-
logicalXor
Computes the truth value of thisNDArrayXOR the otherNDArrayelement-wise.The shapes of this
NDArrayand the otherNDArraymust be broadcastable.Examples
jshell> NDArray array = manager.create(new boolean[] {true}); jshell> array1.logicalXor(array2); ND: (1) cpu() boolean [ true] jshell> array1 = manager.create(new boolean[] {true, false}); jshell> array2 = manager.create(new boolean[] {false, false}); jshell> array1.logicalXor(array2); ND: (2) cpu() boolean [ true, false]jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalXor(array.gt(3)); ND: (5) cpu() boolean [ true, false, false, false, true]
- Specified by:
logicalXorin interfaceNDArray- Parameters:
other- the otherNDArrayto operate on- Returns:
- the boolean
NDArrayof the logical XOR operation applied to the elements of thisNDArrayand the otherNDArray
-
logicalNot
Computes the truth value of NOT thisNDArrayelement-wise.Examples
jshell> NDArray array = manager.create(new boolean[] {true}); jshell> array.logicalNot(); ND: (1) cpu() boolean [ false]jshell> NDArray array = manager.arange(5f); jshell> array.lt(1).logicalNot(); ND: (5) cpu() boolean [false, true, true, true, true]
- Specified by:
logicalNotin interfaceNDArray- Returns:
- the boolean
NDArray
-
argSort
Returns the indices that would sort thisNDArraygiven the axis.Perform an indirect sort along the given axis. It returns a
NDArrayof indices of the sameShapeas thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {0f, 3f, 2f, 2f}, new Shape(2, 2)); jshell> array.argSort(0, false); ND: (2, 2) cpu() int64 [[ 1, 0], [ 0, 1], ]- Specified by:
argSortin interfaceNDArray- Parameters:
axis- the axis to sort alongascending- whether to sort ascending- Returns:
- a
NDArrayof indices corresponding to elements in thisNDArrayon the axis, the output DataType is alwaysDataType.INT64
-
sort
Sorts the flattenedNDArray.Examples
jshell> NDArray array = manager.create(new float[] {1f, 4f, 3f, 1f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 4.], [3., 1.], ] jshell> array.sort(); // sort the flattened array ND: (2, 2) cpu() float32 [[1., 4.], [1., 3.], ] -
sort
Sorts the flattenedNDArray.Examples
jshell> NDArray array = manager.create(new float[] {1f, 4f, 3f, 1f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 4.], [3., 1.], ] jshell> array.sort(0); // sort along the first axis ND: (2, 2) cpu() float32 [[1., 1.], [3., 4.], ] -
softmax
Applies the softmax function along the given axis. -
logSoftmax
Applies the softmax function followed by a logarithm.Mathematically equivalent to calling softmax and then log. This single operator is faster than calling two operators and numerically more stable when computing gradients.
- Specified by:
logSoftmaxin interfaceNDArray- Parameters:
axis- the axis along which to apply- Returns:
- the result
NDArray
-
cumSum
Returns the cumulative sum of the elements in the flattenedNDArray.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f}, new Shape(2, 3)); jshell> array; ND: (2, 3) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.cumSum(); // cumSum on flattened array ND: (6) cpu() float32 [ 1., 3., 6., 10., 15., 21.] -
cumSum
Return the cumulative sum of the elements along a given axis.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f}, new Shape(2, 3)); jshell> array; ND: (2, 3) cpu() float32 [[1., 2., 3.], [4., 5., 6.], ] jshell> array.cumSum(0); ND: (2, 3) cpu() float32 [[1., 2., 3.], [5., 7., 9.], ] jshell> array.cumSum(1); ND: (2, 3) cpu() float32 [[ 1., 3., 6.], [ 4., 9., 15.], ] -
isInfinite
Returns the booleanNDArraywith valuetruewhere thisNDArray's entries are infinite, orfalsewhere they are not infinite.- Specified by:
isInfinitein interfaceNDArray- Returns:
- the boolean
NDArraywith valuetrueif thisNDArray's entries are infinite
-
isNaN
Returns the booleanNDArraywith valuetruewhere thisNDArray's entries are NaN, orfalsewhere they are not NaN.Examples
jshell> NDArray array = manager.create(new float[] {Float.POSITIVE_INFINITY, 0, Float.NaN}); jshell> array.isNaN(); ND: (3) cpu() boolean [false, false, true] -
tile
Constructs aNDArrayby repeating thisNDArraythe number of times given repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(2); ND: (6) cpu() float32 [0., 1., 2., 0., 1., 2.] -
tile
Constructs aNDArrayby repeating thisNDArraythe number of times given by repeats along given axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(1, 2); ND: (1, 6) cpu() float32 [[0., 1., 2., 0., 1., 2.], ] -
tile
Constructs aNDArrayby repeating thisNDArraythe number of times given by repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(new long[] {2, 2}); ND: (2, 6) cpu() float32 [[0., 1., 2., 0., 1., 2.], [0., 1., 2., 0., 1., 2.], ] -
tile
Constructs aNDArrayby repeating thisNDArraythe number of times to match the desired shape.If the desired
Shapehas fewer dimensions than thisNDArray, it will tile against the last axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.tile(new Shape(6)); ND: (6) cpu() float32 [0., 1., 2., 0., 1., 2.] -
repeat
Repeats element of thisNDArraythe number of times given repeats.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f}); jshell> array.repeat(2); ND: (6) cpu() float32 [0., 0., 1., 1., 2., 2.] -
repeat
Repeats element of thisNDArraythe number of times given repeats along given axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(1, 2); ND: (6) cpu() float32 [[0., 0., 1., 1.], [2., 2., 3., 3.]] -
repeat
Repeats element of thisNDArraythe number of times given repeats along each axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(new long[] {2, 2}); ND: (12) cpu() float32 [0., 0., 0., 0., 1., 1., 1., 1., 2., 2., 2., 2.] -
repeat
Repeats element of thisNDArrayto match the desired shape.If the desired
Shapehas fewer dimensions that the array, it will repeat against the last axis.Examples
jshell> NDArray array = manager.create(new float[] {0f, 1f, 2f, 3f}, new Shape(2, 2)); jshell> array.repeat(new Shape(4, 4)); ND: (4, 4) cpu() float32 [[0., 0., 1., 1.], [0., 0., 1., 1.], [2., 2., 3., 3.], [2., 2., 3., 3.], ] -
dot
Dot product of thisNDArrayand the otherNDArray.- If both this
NDArrayand the otherNDArrayare 1-DNDArrays, it is inner product of vectors (without complex conjugation). - If both this
NDArrayand the otherNDArrayare 2-DNDArrays, it is matrix multiplication. - If either this
NDArrayor the otherNDArrayis 0-DNDArray(scalar), it is equivalent to mul. - If this
NDArrayis N-DNDArrayand the otherNDArrayis 1-DNDArray, it is a sum product over the last axis of those. - If this
NDArrayis N-DNDArrayand the otherNDArrayis M-DNDArray(where M>=2), it is a sum product over the last axis of thisNDArrayand the second-to-last axis of the otherNDArray
Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 2f, 3f}); jshell> NDArray array2 = manager.create(new float[] {4f, 5f, 6f}); jshell> array1.dot(array2); // inner product ND: () cpu() float32 32. jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {5f, 6f, 7f, 8f}, new Shape(2, 2)); jshell> array1.dot(array2); // matrix multiplication ND: (2, 2) cpu() float32 [[19., 22.], [43., 50.], ] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(5f); jshell> array1.dot(array2); ND: (2, 2) cpu() float32 [[ 5., 10.], [15., 20.], ] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.dot(array2); ND: (2) cpu() float32 [ 5., 11.] jshell> array1 = manager.create(new float[] {1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f}, new Shape(2, 2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f, 3f ,4f}, new Shape(2, 2)); jshell> array1.dot(array2); ND: (2, 2, 2) cpu() float32 [[[ 7., 10.], [15., 22.], ], [[23., 34.], [31., 46.], ], ] - If both this
-
matMul
Product matrix of thisNDArrayand the otherNDArray.The behavior depends on the arguments in the following way.
- If both this
NDArrayand the otherNDArrayare 2-DNDArrays, they are multiplied like conventional matrices - If either this
NDArrayor the otherNDArrayis N-DNDArray, N > 2 , it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If this
NDArrayis 1-DNDArray, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If other
NDArrayis 1-DNDArray, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
Examples
jshell> NDArray array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> NDArray array2 = manager.create(new float[] {4f, 1f, 2f, 2f}, new Shape(2, 2)); jshell> array1.matMul(array2); // for 2-D arrays, it is the matrix product ND: (2, 2) cpu() float32 [[4., 1.], [2., 2.], ] jshell> array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.matMul(array2); ND: (2) cpu() float32 [1., 2.] jshell> array1 = manager.create(new float[] {1f, 0f, 0f, 1f}, new Shape(2, 2)); jshell> array2 = manager.create(new float[] {1f, 2f}); jshell> array1.matMul(array2); ND: (2) cpu() float32 [1., 2.] jshell> array1 = manager.arange(2f * 2f * 4f).reshape(2, 2, 4); jshell> array2 = manager.arange(2f * 2f * 4f).reshape(2, 4, 2); jshell> array1.matMul(array2).get("0, 1, 1"); ND: () cpu() float32 98. - If both this
-
batchMatMul
Batch product matrix of thisNDArrayand the otherNDArray.- Specified by:
batchMatMulin interfaceNDArray- Parameters:
other- the otherNDArrayto perform matrix product with- Returns:
- the result
NDArray
-
xlogy
Computes this * log(other). -
clip
Clips (limit) the values in thisNDArray.Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.
Examples
jshell> NDArray array = manager.arange(10f); jshell> array.clip(1, 8); ND: (10) cpu() float32 [1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]
-
flip
Returns the reverse order of elements in an array along the given axis.The shape of the array is preserved, but the elements are reordered.
-
transpose
Returns thisNDArraywith axes transposed.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.transpose(); ND: (2, 2) cpu() float32 [[1., 3.], [2., 4.], ] -
transpose
Returns thisNDArraywith given axes transposed.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.transpose(1, 0); ND: (2, 2) cpu() float32 [[1., 3.], [2., 4.], ] jshell> array = manager.arange(8f).reshape(2, 2, 2); jshell> array; ND: (2, 2, 2) cpu() float32 [[[0., 1.], [2., 3.], ], [[4., 5.], [6., 7.], ], ] jshell> array.transpose(1, 0, 2); ND: (2, 2, 2) cpu() float32 [[[0., 1.], [4., 5.], ], [[2., 3.], [6., 7.], ], ] -
broadcast
Broadcasts thisNDArrayto be the given shape.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f ,3f, 4f}, new Shape(2, 2)); jshell> array; ND: (2, 2) cpu() float32 [[1., 2.], [3., 4.], ] jshell> array.broadcast(new Shape(2, 2, 2)); ND: (2, 2, 2) cpu() float32 [[[1., 2.], [3., 4.], ], [[1., 2.], [3., 4.], ], ] -
argMax
Returns the indices of the maximum values into the flattenedNDArray.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMax(); ND: () cpu() int64 5.
-
argMax
Returns the indices of the maximum values along given axis.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMax(0); ND: (3) cpu() int64 [1, 1, 1] jshell> array.argMax(1); ND: (2) cpu() int64 [2, 2]
-
topK
Returns (values, indices) of the top k values along given axis. -
argMin
Returns the indices of the minimum values into the flattenedNDArray.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMin(); ND: () cpu() int64 0.
-
argMin
Returns the indices of the minimum values along given axis.Examples
jshell> NDArray array = manager.arange(6f).reshape(2, 3); jshell> array; ND: (2, 3) cpu() float32 [[0., 1., 2.], [3., 4., 5.], ] jshell> array.argMin(0); ND: (3) cpu() int64 [0, 0, 0] jshell> array.argMin(1); ND: (2) cpu() int64 [0, 0]
-
percentile
Returns percentile for thisNDArray.- Specified by:
percentilein interfaceNDArray- Parameters:
percentile- the target percentile in range of 0..100- Returns:
- the result
NDArray
-
percentile
Returns median along given dimension(s).- Specified by:
percentilein interfaceNDArray- Parameters:
percentile- the target percentile in range of 0..100axes- the dimension to calculate percentile for- Returns:
- the result
NDArrayNDArray
-
median
Returns median value for thisNDArray. -
median
Returns median value along given axes. -
toDense
Returns a dense representation of the sparseNDArray. -
toSparse
Returns a sparse representation ofNDArray.- Specified by:
toSparsein interfaceNDArray- Parameters:
fmt- theSparseFormatof thisNDArray- Returns:
- the result
NDArray
-
nonzero
Returns the indices of elements that are non-zero.Note that the behavior is slightly different from numpy.nonzero. Numpy returns a tuple of NDArray, one for each dimension of NDArray. DJL nonzero returns only one
NDArraywith last dimension containing all dimension of indices.Examples
jshell> NDArray array = manager.create(new float[] {1f, 1f, 1f, 0f, 1f}); jshell> array.nonzero(); ND: (4, 1) cpu() int64 [[ 0], [ 1], [ 2], [ 4], ] jshell> array = manager.create(new float[] {3f, 0f, 0f, 0f, 4f, 0f, 5f, 6f, 0f}).reshape(3, 3); jshell> array; ND: (3, 3) cpu() float32 [[3., 0., 0.], [0., 4., 0.], [5., 6., 0.], ] jshell> array.nonzero(); ND: (4, 2) cpu() int64 [[ 0, 0], [ 1, 1], [ 2, 0], [ 2, 1], ] -
erfinv
Returns element-wise inverse gauss error function of theNDArray.Examples
jshell> NDArray array = manager.create(new float[] {0f, 0.5f, -1f}); jshell> array.erfinv(); ND: (3) cpu() float32 [0., 0.4769, -inf] -
erf
Returns element-wise gauss error function of theNDArray.Examples
jshell> NDArray array = manager.create(new float[] {0f, 0.4769f, Float.NEGATIVE_INFINITY}); jshell> array.erf(); ND: (3) cpu() float32 [0., 0.5, -1] -
inverse
Computes the inverse of squareNDArrayif it exists. -
norm
Returns the norm of thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {-3f, -4f}); jshell> array.norm(true); ND: () cpu() float32 5. jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(true); ND: () cpu() float32 [[5.4772], ] -
norm
Returns the norm of thisNDArray.Examples
jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(2, new int[] {0}, true); ND: (1, 2) cpu() float32 [[3.1623, 4.4721], ] jshell> NDArray array = manager.create(new float[] {1f, 2f, 3f, 4f}, new Shape(2, 2)); jshell> array.norm(2, new int[] {0}, false); ND: (2) cpu() float32 [3.1623, 4.4721]- Specified by:
normin interfaceNDArray- Parameters:
ord- Order of the norm.axes- If axes contains an integer, it specifies the axis of x along which to compute the vector norms. If axis contains 2 integers, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed.keepDims- keepDims If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x.- Returns:
- the norm of this
NDArray
-
oneHot
Returns a one-hotNDArray.- The locations represented by indices take value onValue, while all other locations take value offValue.
- If the input
NDArrayis rank N, the output will have rank N+1. The new axis is appended at the end. - If
NDArrayis a scalar the output shape will be a vector of length depth. - If
NDArrayis a vector of length features, the output shape will be features x depth. - If
NDArrayis a matrix with shape [batch, features], the output shape will be batch x features x depth.
Examples
jshell> NDArray array = manager.create(new int[] {1, 0, 2, 0}); jshell> array.oneHot(3, 8f, 1f, array.getDataType()); ND: (4, 3) cpu() int32 [[ 1, 8, 1], [ 8, 1, 1], [ 1, 1, 8], [ 8, 1, 1], ]- Specified by:
oneHotin interfaceNDArray- Parameters:
depth- Depth of the one hot dimension.onValue- The value assigned to the locations represented by indices.offValue- The value assigned to the locations not represented by indices.dataType- dataType of the output.- Returns:
- one-hot encoding of this
NDArray - See Also:
-
batchDot
Batchwise product of thisNDArrayand the otherNDArray.- batchDot is used to compute dot product of x and y when x and y are data in batch, namely N-D (N greater or equal to 3) arrays in shape of (B0, …, B_i, :, :). For example, given x with shape (B_0, …, B_i, N, M) and y with shape (B_0, …, B_i, M, K), the result array will have shape (B_0, …, B_i, N, K), which is computed by: batch_dot(x,y)[b_0, ..., b_i, :, :] = dot(x[b_0, ..., b_i, :, :], y[b_0, ..., b_i, :, :])
Examples
jshell> NDArray array1 = manager.ones(new Shape(2, 1, 4)); jshell> NDArray array2 = manager.ones(new Shape(2, 4, 6)); jshell> array1.batchDot(array2); ND: (2, 1, 6) cpu() float32 [[[4., 4., 4., 4., 4., 4.], ], [[4., 4., 4., 4., 4., 4.], ], ]
-
complex
Convert a general NDArray to its complex math format.example: [10f, 12f] float32 -> [10+12j] in complex64
-
real
Convert a complex NDArray to its real math format. example: [10+12j] in complex64 -> [10f, 12f] float32 -
conj
Conjugate complex array. -
getNDArrayInternal
public ai.djl.ndarray.internal.NDArrayEx getNDArrayInternal()Returns an internal representative of NativeNDArray.This method should only be used by Engine provider
- Specified by:
getNDArrayInternalin interfaceNDArray- Returns:
- an internal representative of Native
NDArray
-
isReleased
public boolean isReleased()Returnstrueif this NDArray has been released.- Specified by:
isReleasedin interfaceNDArray- Returns:
trueif this NDArray has been released
-
close
public void close()- Specified by:
closein interfaceAutoCloseable- Specified by:
closein interfaceNDArray- Specified by:
closein interfaceNDResource
-
equals
-
hashCode
public int hashCode() -
toString
-