Package ai.djl.training.loss
Class SigmoidBinaryCrossEntropyLoss
java.lang.Object
ai.djl.training.evaluator.Evaluator
ai.djl.training.loss.Loss
ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
SigmoidBinaryCrossEntropyLoss
is a type of Loss
.
Sigmoid binary cross-entropy loss is defined by: \(L = -\sum_i {label_i * log(prob_i) * posWeight + (1 - label_i) * log(1 - prob_i)}\) where \(prob = \frac{1}{1 + e^{-pred}}\)
-
Field Summary
Fields inherited from class ai.djl.training.evaluator.Evaluator
totalInstances
-
Constructor Summary
ConstructorsConstructorDescriptionPerforms Sigmoid cross-entropy loss for binary classification.Performs Sigmoid cross-entropy loss for binary classification.SigmoidBinaryCrossEntropyLoss
(String name, float weight, boolean fromSigmoid) Performs Sigmoid cross-entropy loss for binary classification. -
Method Summary
Methods inherited from class ai.djl.training.loss.Loss
addAccumulator, elasticNetWeightedDecay, elasticNetWeightedDecay, elasticNetWeightedDecay, elasticNetWeightedDecay, getAccumulator, hingeLoss, hingeLoss, hingeLoss, l1Loss, l1Loss, l1Loss, l1WeightedDecay, l1WeightedDecay, l1WeightedDecay, l2Loss, l2Loss, l2Loss, l2WeightedDecay, l2WeightedDecay, l2WeightedDecay, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, quantileL1Loss, quantileL1Loss, resetAccumulator, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, updateAccumulator, updateAccumulators
Methods inherited from class ai.djl.training.evaluator.Evaluator
checkLabelShapes, checkLabelShapes, getName
-
Constructor Details
-
SigmoidBinaryCrossEntropyLoss
public SigmoidBinaryCrossEntropyLoss()Performs Sigmoid cross-entropy loss for binary classification. -
SigmoidBinaryCrossEntropyLoss
Performs Sigmoid cross-entropy loss for binary classification.- Parameters:
name
- the name of the loss
-
SigmoidBinaryCrossEntropyLoss
Performs Sigmoid cross-entropy loss for binary classification.- Parameters:
name
- the name of the lossweight
- the weight to apply on the loss value, default 1fromSigmoid
- whether the input is from the output of sigmoid, default false
-
-
Method Details