Package ai.djl.basicmodelzoo.basic
Class Mlp
java.lang.Object
ai.djl.nn.AbstractBaseBlock
ai.djl.nn.AbstractBlock
ai.djl.nn.SequentialBlock
ai.djl.basicmodelzoo.basic.Mlp
- All Implemented Interfaces:
ai.djl.inference.streaming.StreamingBlock
,ai.djl.nn.Block
public class Mlp
extends ai.djl.nn.SequentialBlock
Multilayer Perceptron (MLP) NeuralNetworks.
A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a set of outputs from a set of inputs. An MLP is characterized by several layers of input nodes connected as a directed graph between the input and output layers. MLP uses backpropogation for training the network.
MLP is widely used for solving problems that require supervised learning as well as research into computational neuroscience and parallel distributed processing. Applications include speech recognition, image recognition and machine translation.
- See Also:
-
Field Summary
Fields inherited from class ai.djl.nn.AbstractBlock
children, parameters
Fields inherited from class ai.djl.nn.AbstractBaseBlock
inputNames, inputShapes, outputDataTypes, version
-
Constructor Summary
Constructors -
Method Summary
Methods inherited from class ai.djl.nn.SequentialBlock
add, add, add, addAll, addAll, addSingleton, addSingleton, forwardInternal, forwardInternal, forwardStreamIter, getOutputShapes, initializeChildBlocks, isReturnIntermediate, loadMetadata, removeLastBlock, replaceLastBlock, saveMetadata, setReturnIntermediate
Methods inherited from class ai.djl.nn.AbstractBlock
addChildBlock, addChildBlock, addChildBlockSingleton, addParameter, getChildren, getDirectParameters
Methods inherited from class ai.djl.nn.AbstractBaseBlock
beforeInitialize, cast, clear, describeInput, forward, forward, getInputShapes, getOutputDataTypes, getParameters, initialize, isInitialized, loadParameters, prepare, readInputShapes, saveInputShapes, saveParameters, setInitializer, setInitializer, setInitializer, toString
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface ai.djl.nn.Block
cast, clear, describeInput, forward, forward, forward, freezeParameters, freezeParameters, getChildren, getDirectParameters, getInputShapes, getOutputDataTypes, getOutputShapes, getParameters, initialize, isInitialized, loadParameters, saveParameters, setInitializer, setInitializer, setInitializer
Methods inherited from interface ai.djl.inference.streaming.StreamingBlock
forwardStream, forwardStream
-
Constructor Details
-
Mlp
public Mlp(int input, int output, int[] hidden) Create an MLP NeuralNetwork using RELU.- Parameters:
input
- the size of the input vectoroutput
- the size of the output vectorhidden
- the sizes of all of the hidden layers
-
Mlp
public Mlp(int input, int output, int[] hidden, Function<ai.djl.ndarray.NDList, ai.djl.ndarray.NDList> activation) Create an MLP NeuralNetwork.- Parameters:
input
- the size of the input vectoroutput
- the size of the output vectorhidden
- the sizes of all of the hidden layersactivation
- the activation function to use
-