Class QNMinimizer
java.lang.Object
opennlp.tools.ml.maxent.quasinewton.QNMinimizer
Implementation of L-BFGS which supports L1-, L2-regularization
and Elastic Net for solving convex optimization problems.
Usage example:
// Quadratic function f(x) = (x-1)^2 + 10 // f obtains its minimum value 10 at x = 1 Function f = new Function() { @Override public int getDimension() { return 1; } @Override public double valueAt(double[] x) { return StrictMath.pow(x[0]-1, 2) + 10; } @Override public double[] gradientAt(double[] x) { return new double[] { 2*(x[0]-1) }; } }; QNMinimizer minimizer = new QNMinimizer(); double[] x = minimizer.minimize(f); double min = f.valueAt(x);
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic interface
Evaluate quality of training parameters.static class
L2-regularized objective function -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
static final double
static final double
static final double
static final int
static final int
static final double
static final int
static final double
-
Constructor Summary
ConstructorsConstructorDescriptionQNMinimizer
(double l1Cost, double l2Cost) QNMinimizer
(double l1Cost, double l2Cost, int iterations) QNMinimizer
(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval) QNMinimizer
(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval, boolean verbose) Constructor -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
Find the parameters that minimize the objective functionvoid
setEvaluator
(QNMinimizer.Evaluator evaluator)
-
Field Details
-
CONVERGE_TOLERANCE
public static final double CONVERGE_TOLERANCE- See Also:
-
REL_GRAD_NORM_TOL
public static final double REL_GRAD_NORM_TOL- See Also:
-
INITIAL_STEP_SIZE
public static final double INITIAL_STEP_SIZE- See Also:
-
MIN_STEP_SIZE
public static final double MIN_STEP_SIZE- See Also:
-
L1COST_DEFAULT
public static final double L1COST_DEFAULT- See Also:
-
L2COST_DEFAULT
public static final double L2COST_DEFAULT- See Also:
-
NUM_ITERATIONS_DEFAULT
public static final int NUM_ITERATIONS_DEFAULT- See Also:
-
M_DEFAULT
public static final int M_DEFAULT- See Also:
-
MAX_FCT_EVAL_DEFAULT
public static final int MAX_FCT_EVAL_DEFAULT- See Also:
-
-
Constructor Details
-
QNMinimizer
public QNMinimizer() -
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost) -
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost, int iterations) -
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval) -
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval, boolean verbose) Constructor- Parameters:
l1Cost
- L1-regularization costl2Cost
- L2-regularization costiterations
- maximum number of iterationsm
- number of Hessian updates to storemaxFctEval
- maximum number of function evaluationsverbose
- verbose output
-
-
Method Details
-
getEvaluator
-
setEvaluator
-
minimize
Find the parameters that minimize the objective function- Parameters:
function
- objective function- Returns:
- minimizing parameters
-