Package opennlp.tools.ml.perceptron
Class PerceptronTrainer
java.lang.Object
opennlp.tools.ml.AbstractTrainer
opennlp.tools.ml.AbstractEventTrainer
opennlp.tools.ml.perceptron.PerceptronTrainer
- All Implemented Interfaces:
EventTrainer
Trains models using the perceptron algorithm. Each outcome is represented as
a binary perceptron classifier. This supports standard (integer) weighting as well
average weighting as described in:
Discriminative Training Methods for Hidden Markov Models: Theory and Experiments
with the Perceptron Algorithm. Michael Collins, EMNLP 2002.
-
Field Summary
FieldsFields inherited from class opennlp.tools.ml.AbstractEventTrainer
DATA_INDEXER_ONE_PASS_REAL_VALUE, DATA_INDEXER_ONE_PASS_VALUE, DATA_INDEXER_PARAM, DATA_INDEXER_TWO_PASS_VALUE
Fields inherited from class opennlp.tools.ml.AbstractTrainer
ALGORITHM_PARAM, CUTOFF_DEFAULT, CUTOFF_PARAM, ITERATIONS_DEFAULT, ITERATIONS_PARAM, TRAINER_TYPE_PARAM, VERBOSE_DEFAULT, VERBOSE_PARAM
Fields inherited from interface opennlp.tools.ml.EventTrainer
EVENT_VALUE
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoTrain
(DataIndexer indexer) boolean
boolean
isValid()
Deprecated.void
setSkippedAveraging
(boolean averaging) Enables skipped averaging, this flag changes the standard averaging to special averaging instead.void
setStepSizeDecrease
(double decrease) Enables and sets step size decrease.void
setTolerance
(double tolerance) Specifies the tolerance.trainModel
(int iterations, DataIndexer di, int cutoff) trainModel
(int iterations, DataIndexer di, int cutoff, boolean useAverage) void
validate()
Check parameters.Methods inherited from class opennlp.tools.ml.AbstractEventTrainer
getDataIndexer, train, train
Methods inherited from class opennlp.tools.ml.AbstractTrainer
getAlgorithm, getCutoff, getIterations, init, init
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface opennlp.tools.ml.EventTrainer
init, init
-
Field Details
-
PERCEPTRON_VALUE
- See Also:
-
TOLERANCE_DEFAULT
public static final double TOLERANCE_DEFAULT- See Also:
-
-
Constructor Details
-
PerceptronTrainer
public PerceptronTrainer() -
PerceptronTrainer
-
-
Method Details
-
validate
public void validate()Description copied from class:AbstractTrainer
Check parameters. If subclass overrides this, it should call super.validate();- Overrides:
validate
in classAbstractEventTrainer
-
isValid
Deprecated.- Overrides:
isValid
in classAbstractEventTrainer
- Returns:
-
isSortAndMerge
public boolean isSortAndMerge()- Specified by:
isSortAndMerge
in classAbstractEventTrainer
-
doTrain
- Specified by:
doTrain
in classAbstractEventTrainer
- Throws:
IOException
-
setTolerance
public void setTolerance(double tolerance) Specifies the tolerance. If the change in training set accuracy is less than this, stop iterating.- Parameters:
tolerance
-
-
setStepSizeDecrease
public void setStepSizeDecrease(double decrease) Enables and sets step size decrease. The step size is decreased every iteration by the specified value.- Parameters:
decrease
- - step size decrease in percent
-
setSkippedAveraging
public void setSkippedAveraging(boolean averaging) Enables skipped averaging, this flag changes the standard averaging to special averaging instead.If we are doing averaging, and the current iteration is one of the first 20 or it is a perfect square, then updated the summed parameters.
The reason we don't take all of them is that the parameters change less toward the end of training, so they drown out the contributions of the more volatile early iterations. The use of perfect squares allows us to sample from successively farther apart iterations.
- Parameters:
averaging
- averaging flag
-
trainModel
-
trainModel
-