Class ExponentialDistributionImpl
java.lang.Object
org.apache.commons.math.distribution.AbstractDistribution
org.apache.commons.math.distribution.AbstractContinuousDistribution
org.apache.commons.math.distribution.ExponentialDistributionImpl
- All Implemented Interfaces:
Serializable
,ContinuousDistribution
,Distribution
,ExponentialDistribution
,HasDensity<Double>
public class ExponentialDistributionImpl
extends AbstractContinuousDistribution
implements ExponentialDistribution, Serializable
The default implementation of
ExponentialDistribution
.- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
Default inverse cumulative probability accuracy -
Constructor Summary
ConstructorsConstructorDescriptionExponentialDistributionImpl
(double mean) Create a exponential distribution with the given mean.ExponentialDistributionImpl
(double mean, double inverseCumAccuracy) Create a exponential distribution with the given mean. -
Method Summary
Modifier and TypeMethodDescriptiondouble
cumulativeProbability
(double x) For this distribution, X, this method returns P(X < x).double
density
(double x) Return the probability density for a particular point.double
Deprecated.- use density(double)double
getMean()
Access the mean.double
Returns the mean of the distribution.double
Returns the variance of the distribution.double
Returns the lower bound of the support for the distribution.double
Returns the upper bound of the support for the distribution.double
inverseCumulativeProbability
(double p) For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.double
sample()
Generates a random value sampled from this distribution.void
setMean
(double mean) Deprecated.as of 2.1 (class will become immutable in 3.0)Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
Field Details
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
-
-
Constructor Details
-
ExponentialDistributionImpl
public ExponentialDistributionImpl(double mean) Create a exponential distribution with the given mean.- Parameters:
mean
- mean of this distribution.
-
ExponentialDistributionImpl
public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) Create a exponential distribution with the given mean.- Parameters:
mean
- mean of this distribution.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
)- Since:
- 2.1
-
-
Method Details
-
setMean
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the mean.- Specified by:
setMean
in interfaceExponentialDistribution
- Parameters:
mean
- the new mean.- Throws:
IllegalArgumentException
- ifmean
is not positive.
-
getMean
public double getMean()Access the mean.- Specified by:
getMean
in interfaceExponentialDistribution
- Returns:
- the mean.
-
density
Deprecated.- use density(double)Return the probability density for a particular point.- Specified by:
density
in interfaceExponentialDistribution
- Specified by:
density
in interfaceHasDensity<Double>
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
public double density(double x) Return the probability density for a particular point.- Overrides:
density
in classAbstractContinuousDistribution
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
For this distribution, X, this method returns P(X < x). The implementation of this method is based on:- Exponential Distribution, equation (1).
- Specified by:
cumulativeProbability
in interfaceDistribution
- Parameters:
x
- the value at which the CDF is evaluated.- Returns:
- CDF for this distribution.
- Throws:
MathException
- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.Returns 0 for p=0 and
Double.POSITIVE_INFINITY
for p=1.- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability- Returns:
- x, such that P(X < x) =
p
- Throws:
MathException
- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.IllegalArgumentException
- if p invalid input: '<' 0 or p > 1.
-
sample
Generates a random value sampled from this distribution.Algorithm Description: Uses the Inversion Method to generate exponentially distributed random values from uniform deviates.
- Overrides:
sample
in classAbstractContinuousDistribution
- Returns:
- random value
- Throws:
MathException
- if an error occurs generating the random value- Since:
- 2.2
-
getSupportLowerBound
public double getSupportLowerBound()Returns the lower bound of the support for the distribution. The lower bound of the support is always 0, regardless of the mean.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity, regardless of the mean.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()Returns the mean of the distribution. For mean parameterk
, the mean isk
- Returns:
- the mean
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()Returns the variance of the distribution. For mean parameterk
, the variance isk^2
- Returns:
- the variance
- Since:
- 2.2
-