Reference

@POJOBoilerplate
class Reference(val id: Option[String], `type`: Option[UriStr], val display: Option[String], val extension: LitSeq[Extension], val reference: Option[String], val identifier: Option[Identifier], val primitiveAttributes: TreeMap[FHIRComponentFieldMeta[_], PrimitiveElementInfo]) extends Element

Base StructureDefinition for Reference Type: A reference from one resource to another.

Subclass of core.model.Element (Base StructureDefinition for Element Type: Base definition for all elements in a resource.)

Value parameters:
`type`
  • The expected type of the target of the reference. If both Reference.type and Reference.reference are populated and Reference.reference is a FHIR URL, both SHALL be consistent. The type is the Canonical URL of Resource Definition that is the type this reference refers to. References are URLs that are relative to http://hl7.org/fhir/StructureDefinition/ e.g. "Patient" is a reference to http://hl7.org/fhir/StructureDefinition/Patient. Absolute URLs are only allowed for logical models (and can only be used in references in logical models, not resources).
display
  • Plain text narrative that identifies the resource in addition to the resource reference.
extension
  • May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension.
id
  • Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces.
identifier
  • An identifier for the target resource. This is used when there is no way to reference the other resource directly, either because the entity it represents is not available through a FHIR server, or because there is no way for the author of the resource to convert a known identifier to an actual location. There is no requirement that a Reference.identifier point to something that is actually exposed as a FHIR instance, but it SHALL point to a business concept that would be expected to be exposed as a FHIR instance, and that instance would need to be of a FHIR resource type allowed by the reference.
reference
  • A reference to a location at which the other resource is found. The reference may be a relative reference, in which case it is relative to the service base URL, or an absolute URL that resolves to the location where the resource is found. The reference may be version specific or not. If the reference is not to a FHIR RESTful server, then it should be assumed to be version specific. Internal fragment references (start with '#') refer to contained resources.
Constructor:

Introduces the fields type, display, reference, identifier.

Companion:
object
class Element
trait Utils
class Object
trait Matchable
class Any

Type members

Inherited classlikes

object extensions
Inherited from:
FHIRObject
object ids
Inherited from:
FHIRObject

Inherited types

Value members

Concrete methods

def getIds(field: C => FHIRComponentFieldMeta[_]): Option[String]
def set[T](fieldSelection: C => FHIRComponentFieldMeta[T])(value: T): O
def setIds(field: C => FHIRComponentFieldMeta[_])(id: Option[String]): O
def update[T](fieldSelection: C => FHIRComponentFieldMeta[T])(fn: T => T): O
def updateAll[T](fieldSelection: C => FHIRComponentFieldMeta[LitSeq[T]])(fn: T => T): O
def updateIds(field: C => FHIRComponentFieldMeta[_])(update: Option[String] => Option[String]): O
def updateIfExists[T](fieldSelection: C => FHIRComponentFieldMeta[Option[T]])(fn: T => T): O

Inherited methods

final def >>[T](fn: T => T)(implicit tt: LTag[T]): Reference

Slower than nodalMap, but should work with subtypes (e.g. PositiveInt). If you must use it, then:

Slower than nodalMap, but should work with subtypes (e.g. PositiveInt). If you must use it, then:

  • T should not be a Choice[_], a LitSeq[_] or an Option[_]
  • It may require a type parameter sometimes (e.g. sampleResource >>[BUNDLE_TYPE] { (_: BUNDLE_TYPE) => BUNDLE_TYPE.SEARCHSET } )
Inherited from:
FHIRObject
final def >>=[T, F[_] : Monad](fn: T => F[T])(implicit evidence$7: Monad[F], tt: LTag[T]): F[Reference]
Inherited from:
FHIRObject
final def ^^[From, To](fn: From => To)(implicit tt: LTag[From]): LitSeq[To]

Extract values of type From, and map to LitSeq[To] using fn: From => To. Unlike >>, this is safe even if From is a Choice[], a LitSeq[] or an Option[_] Quite slow, slower than nodalExtract

Extract values of type From, and map to LitSeq[To] using fn: From => To. Unlike >>, this is safe even if From is a Choice[], a LitSeq[] or an Option[_] Quite slow, slower than nodalExtract

Inherited from:
FHIRObject
final def ^^^[T](implicit tt: LTag[T]): LitSeq[T]
Inherited from:
FHIRObject
def companionClassName[T](tag: LTag[T]): String
Inherited from:
Utils
def companionOf[T <: FHIRObject : ClassTag](implicit evidence$1: ClassTag[T], tag: LTag[T]): CompanionFor[T]
Inherited from:
Utils
def constructor: Constructor[_]
Inherited from:
FHIRComponent
def decodeMethodFor[T <: FHIRObject : ClassTag](implicit evidence$2: ClassTag[T], tag: LTag[T], params: DecoderParams): HCursor => Try[T]
Inherited from:
Utils
override def equals(obj: Any): Boolean
Definition Classes
FHIRObject -> Any
Inherited from:
FHIRObject
Inherited from:
FHIRObject
def getFieldByClass[T](name: String, clazz: Class[T]): LitSeq[T]
Inherited from:
FHIRComponent
def getFieldByType[T : LTag](name: String): LitSeq[T]
Inherited from:
FHIRComponent
override def hashCode(): Int
Definition Classes
FHIRObject -> Any
Inherited from:
FHIRObject
def modifyField[T : LTag, Up >: Reference <: FHIRObject](fieldName: String, modify: T => T)(implicit evidence$5: LTag[T], ct: ClassTag[Up], tt: LTag[Up]): Up
Inherited from:
FHIRObject
def modifyFieldUnsafe[T, Up >: Reference <: FHIRObject](fieldName: String, modify: T => T)(implicit ct: ClassTag[Up], tt: LTag[Up]): Up
Inherited from:
FHIRObject
final def nodalExtract[From, To](klass: Class[From], fn: From => To): LitSeq[To]

Convenience alias for nodalGetByClass andThen map to LitSeq[To] using fn: From => To.

Convenience alias for nodalGetByClass andThen map to LitSeq[To] using fn: From => To.

Inherited from:
FHIRObject
final def nodalGetByClass[Target](klass: Class[Target]): LitSeq[Target]

Extract values of type From Unlike nodalMap, this is safe even if From is a Choice[_], a LitSeq[_] or an Option[_], however there remains a caveat with 'subtyped' types (eg PositiveInt), in that we can't differentiate them from the parent class Quite slow but faster than ^^

Extract values of type From Unlike nodalMap, this is safe even if From is a Choice[_], a LitSeq[_] or an Option[_], however there remains a caveat with 'subtyped' types (eg PositiveInt), in that we can't differentiate them from the parent class Quite slow but faster than ^^

Inherited from:
FHIRObject
final def nodalMap[T](klass: Class[T], fn: T => T): Reference

Bit faster than >>, but still much slower than using update$foo when possible. If you must use it, then:

Bit faster than >>, but still much slower than using update$foo when possible. If you must use it, then:

  • T should not be a Choice[_], a LitSeq[_], an Option[_], or any 'subtyped' type (eg PositiveInt). You should ensure, if T is a supertype of multiple valid choice values (e.g. T =:= Object), that the return value of fn retains the same type as the input value.
Inherited from:
FHIRObject
def productElementNames: Iterator[String]
Inherited from:
Product
def productIterator: Iterator[Any]
Inherited from:
Product
def setFromField[T, UpType >: Reference <: FHIRObject : LTag](field: FHIRComponentFieldMeta[T])(newVal: T): UpType
Inherited from:
FHIRObject
def thisClassName: String
Inherited from:
FHIRObject
def toClass[T](klass: Class[T]): Option[T]
Inherited from:
FHIRObject
override def toString: String
Definition Classes
FHIRObject -> Any
Inherited from:
FHIRObject
def toType[T](implicit ct: ClassTag[T]): Option[T]
Inherited from:
FHIRObject
def updateFromField[T, UpType >: Reference <: FHIRObject : LTag](field: FHIRComponentFieldMeta[T])(fn: T => T): UpType
Inherited from:
FHIRObject
def withField[T : LTag, Up >: Reference <: FHIRObject](fieldName: String, value: T)(implicit evidence$6: LTag[T], ct: ClassTag[Up], tt: LTag[Up]): Up
Inherited from:
FHIRObject
def withFieldUnsafe[T, Up >: Reference <: FHIRObject](fieldName: String, value: T)(implicit ct: ClassTag[Up], tt: LTag[Up]): Up
Inherited from:
FHIRObject
def withFields[Up >: Reference <: FHIRObject](replacementFields: (String, Any)*)(implicit ct: ClassTag[Up], tt: LTag[Up]): Up
Inherited from:
FHIRObject

Concrete fields

val `type`: Option[UriStr]
val display: Option[String]
override val extension: LitSeq[Extension]
override val id: Option[String]
val identifier: Option[Identifier]
val reference: Option[String]
override val thisTypeName: String

Inherited fields