object extension
These implicit classes can be used to extend the core combinator set of Parsley.
This may mean that importing them enables combinators that can be used on non-Parsley
types,
or might enable some syntactic sugar that is not part of the core combinator "style".#
- Source
- extension.scala
- Since
4.5.0
- Alphabetic
- By Inheritance
- extension
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
implicit final
class
HaskellStyleMap[-A, +B] extends AnyVal
This class exposes the
<#>
combinator on functions.This class exposes the
<#>
combinator on functions.This extension class operates on functions. It enables the use of the
<#>
combinator, which is an alias formap
designed to more closely mimic Haskell's style. -
implicit final
class
LazyChooseParsley[P, Q, +A] extends AnyRef
This class exposes an if combinator on pairs of parsers.
This class exposes an if combinator on pairs of parsers.
This extension class operators on pairs of values that are convertible to parsers. It enables the use of the
?:
combinator, which is an alias forifP
.- P
the type of left base value that this class is used on (the conversion to
Parsley
) is summoned automatically.- Q
the type of right base value that this class is used on (the conversion to
Parsley
) is summoned automatically.
-
implicit final
class
OperatorSugar[P, +A] extends AnyRef
This class enables "operator-style" alternative combinators on parsers.
This class enables "operator-style" alternative combinators on parsers.
This extension class exposes a collection of "operator-style" combinators on values that are convertible to parsers that are plain syntactic sugar for other functionality in the library; they are potentially less readable than the combinators they replace, so should be used sparingly.
- P
the type of base value that this class is used on (the conversion to
Parsley
) is summoned automatically.
- Since
4.0.0
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
This is the documentation for Parsley.
Package structure
The parsley package contains the
Parsley
class, as well as theResult
,Success
, andFailure
types. In addition to these, it also contains the following packages and "modules" (a module is defined as being an object which mocks a package):parsley.Parsley
contains the bulk of the core "function-style" combinators.parsley.combinator
contains many helpful combinators that simplify some common parser patterns.parsley.character
contains the combinators needed to read characters and strings, as well as combinators to match specific sub-sets of characters.parsley.debug
contains debugging combinators, helpful for identifying faults in parsers.parsley.expr
contains the following sub modules:parsley.expr.chain
contains combinators used in expression parsingparsley.expr.precedence
is a builder for expression parsers built on a precedence table.parsley.expr.infix
contains combinators used in expression parsing, but with more permissive types than their equivalents inchain
.parsley.expr.mixed
contains combinators that can be used for expression parsing, but where different fixities may be mixed on the same level: this is rare in practice.parsley.syntax
contains several implicits to add syntactic sugar to the combinators. These are sub-categorised into the following sub modules:parsley.syntax.character
contains implicits to allow you to use character and string literals as parsers.parsley.syntax.lift
enables postfix application of the lift combinator onto a function (or value).parsley.syntax.zipped
enables boths a reversed form of lift where the function appears on the right and is applied on a tuple (useful when type inference has failed) as well as a.zipped
method for building tuples out of several combinators.parsley.syntax.extension
contains syntactic sugar combinators exposed as implicit classes.parsley.errors
contains modules to deal with error messages, their refinement and generation.parsley.errors.combinator
provides combinators that can be used to either produce more detailed errors as well as refine existing errors.parsley.errors.tokenextractors
provides mixins for common token extraction strategies during error message generation: these can be used to avoid implementingunexpectedToken
in theErrorBuilder
.parsley.lift
contains functions which lift functions that work on regular types to those which now combine the results of parsers returning those same types. these are ubiquitous.parsley.ap
contains functions which allow for the application of a parser returning a function to several parsers returning each of the argument types.parsley.state
contains combinators that interact with the context-sensitive functionality in the form of state.parsley.token
contains theLexer
class that provides a host of helpful lexing combinators when provided with the description of a language.parsley.position
contains parsers for extracting position information.parsley.generic
contains some basic implementations of the Parser Bridge pattern (see Design Patterns for Parser Combinators in Scala, or the parsley wiki): these can be used before more specialised generic bridge traits can be constructed.