Class Solution
- java.lang.Object
-
- g1401_1500.s1499_max_value_of_equation.Solution
-
public class Solution extends Object
1499 - Max Value of Equation.Hard
You are given an array
pointscontaining the coordinates of points on a 2D plane, sorted by the x-values, wherepoints[i] = [xi, yi]such thatxi < xjfor all1 <= i < j <= points.length. You are also given an integerk.Return the maximum value of the equation
yi + yj + |xi - xj|where|xi - xj| <= kand1 <= i < j <= points.length.It is guaranteed that there exists at least one pair of points that satisfy the constraint
|xi - xj| <= k.Example 1:
Input: points = [[1,3],[2,0],[5,10],[6,-10]], k = 1
Output: 4
Explanation: The first two points satisfy the condition |xi - xj| <= 1 and if we calculate the equation we get 3 + 0 + |1 - 2| = 4. Third and fourth points also satisfy the condition and give a value of 10 + -10 + |5 - 6| = 1.
No other pairs satisfy the condition, so we return the max of 4 and 1.
Example 2:
Input: points = [[0,0],[3,0],[9,2]], k = 3
Output: 3
Explanation: Only the first two points have an absolute difference of 3 or less in the x-values, and give the value of 0 + 0 + |0 - 3| = 3.
Constraints:
2 <= points.length <= 105points[i].length == 2-108 <= xi, yi <= 1080 <= k <= 2 * 108xi < xjfor all1 <= i < j <= points.lengthxiform a strictly increasing sequence.
-
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description intfindMaxValueOfEquation(int[][] points, int k)
-