Class Solution
Hard
You are given a 0-indexed integer array stations of length n, where stations[i] represents the number of power stations in the ith city.
Each power station can provide power to every city in a fixed range. In other words, if the range is denoted by r, then a power station at city i can provide power to all cities j such that |i - j| <= r and 0 <= i, j <= n - 1.
- Note that
|x|denotes absolute value. For example,|7 - 5| = 2and|3 - 10| = 7.
The power of a city is the total number of power stations it is being provided power from.
The government has sanctioned building k more power stations, each of which can be built in any city, and have the same range as the pre-existing ones.
Given the two integers r and k, return the maximum possible minimum power of a city, if the additional power stations are built optimally.
Note that you can build the k power stations in multiple cities.
Example 1:
Input: stations = [1,2,4,5,0], r = 1, k = 2
Output: 5
Explanation:
One of the optimal ways is to install both the power stations at city 1.
So stations will become [1,4,4,5,0].
-
City 0 is provided by 1 + 4 = 5 power stations.
-
City 1 is provided by 1 + 4 + 4 = 9 power stations.
-
City 2 is provided by 4 + 4 + 5 = 13 power stations.
-
City 3 is provided by 5 + 4 = 9 power stations.
-
City 4 is provided by 5 + 0 = 5 power stations.
So the minimum power of a city is 5.
Since it is not possible to obtain a larger power, we return 5.
Example 2:
Input: stations = [4,4,4,4], r = 0, k = 3
Output: 4
Explanation: It can be proved that we cannot make the minimum power of a city greater than 4.
Constraints:
n == stations.length1 <= n <= 1050 <= stations[i] <= 1050 <= r <= n - 10 <= k <= 109
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
maxPower
public long maxPower(int[] stations, int r, int k)
-