java.lang.Object
g0301_0400.s0334_increasing_triplet_subsequence.Solution

public class Solution extends Object
334 - Increasing Triplet Subsequence.<p>Medium</p> <p>Given an integer array <code>nums</code>, return <code>true</code> <em>if there exists a triple of indices</em> <code>(i, j, k)</code> <em>such that</em> <code>i < j < k</code> <em>and</em> <code>nums[i] < nums[j] < nums[k]</code>. If no such indices exists, return <code>false</code>.</p> <p><strong>Example 1:</strong></p> <p><strong>Input:</strong> nums = [1,2,3,4,5]</p> <p><strong>Output:</strong> true</p> <p><strong>Explanation:</strong> Any triplet where i < j < k is valid.</p> <p><strong>Example 2:</strong></p> <p><strong>Input:</strong> nums = [5,4,3,2,1]</p> <p><strong>Output:</strong> false</p> <p><strong>Explanation:</strong> No triplet exists.</p> <p><strong>Example 3:</strong></p> <p><strong>Input:</strong> nums = [2,1,5,0,4,6]</p> <p><strong>Output:</strong> true</p> <p><strong>Explanation:</strong> The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= nums.length <= 5 * 10<sup>5</sup></code></li> <li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li> </ul> <p><strong>Follow up:</strong> Could you implement a solution that runs in <code>O(n)</code> time complexity and <code>O(1)</code> space complexity?</p>
  • Constructor Details

    • Solution

      public Solution()
  • Method Details

    • increasingTriplet

      public boolean increasingTriplet(int[] nums)