Class Solution
java.lang.Object
g1901_2000.s1995_count_special_quadruplets.Solution
1995 - Count Special Quadruplets.<p>Easy</p>
<p>Given a <strong>0-indexed</strong> integer array <code>nums</code>, return <em>the number of <strong>distinct</strong> quadruplets</em> <code>(a, b, c, d)</code> <em>such that:</em></p>
<ul>
<li><code>nums[a] + nums[b] + nums[c] == nums[d]</code>, and</li>
<li><code>a < b < c < d</code></li>
</ul>
<p><strong>Example 1:</strong></p>
<p><strong>Input:</strong> nums = [1,2,3,6]</p>
<p><strong>Output:</strong> 1</p>
<p><strong>Explanation:</strong> The only quadruplet that satisfies the requirement is (0, 1, 2, 3) because 1 + 2 + 3 == 6.</p>
<p><strong>Example 2:</strong></p>
<p><strong>Input:</strong> nums = [3,3,6,4,5]</p>
<p><strong>Output:</strong> 0</p>
<p><strong>Explanation:</strong> There are no such quadruplets in [3,3,6,4,5].</p>
<p><strong>Example 3:</strong></p>
<p><strong>Input:</strong> nums = [1,1,1,3,5]</p>
<p><strong>Output:</strong> 4</p>
<p><strong>Explanation:</strong> The 4 quadruplets that satisfy the requirement are:</p>
<ul>
<li>
<p>(0, 1, 2, 3): 1 + 1 + 1 == 3</p>
</li>
<li>
<p>(0, 1, 3, 4): 1 + 1 + 3 == 5</p>
</li>
<li>
<p>(0, 2, 3, 4): 1 + 1 + 3 == 5</p>
</li>
<li>
<p>(1, 2, 3, 4): 1 + 1 + 3 == 5</p>
</li>
</ul>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>4 <= nums.length <= 50</code></li>
<li><code>1 <= nums[i] <= 100</code></li>
</ul>
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
countQuadruplets
public int countQuadruplets(int[] nums)
-