Class Solution
Hard
The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.
Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.
Example 1:

Input: n = 4
Output: [[“.Q..”,“…Q”,“Q…”,“..Q.”],[“..Q.”,“Q…”,“…Q”,“.Q..”]]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above
Example 2:
Input: n = 1
Output: [[“Q”]]
Constraints:
1 <= n <= 9
To solve the “N-Queens” problem in Java with the Solution class, follow these steps:
- Define a method
solveNQueensin theSolutionclass that takes an integernas input and returns a list of lists of strings. - Initialize a board represented as a 2D character array of size
n x n. Initialize all cells to'.', indicating an empty space. - Define a recursive backtracking function
backtrackto explore all possible configurations of queens on the board. - In the
backtrackfunction:- Base case: If the current row index
rowis equal ton, it means we have successfully placednqueens on the board. Add the current board configuration to the result. - Iterate through each column index
colfrom0ton - 1:- Check if it’s safe to place a queen at position
(row, col)by calling a helper functionisSafe. - If it’s safe, place a queen at position
(row, col)on the board, mark it as'Q'. - Recur to the next row by calling
backtrack(row + 1). - Backtrack: After exploring all possibilities, remove the queen from position
(row, col)by marking it as'.'.
- Check if it’s safe to place a queen at position
- Base case: If the current row index
- In the
solveNQueensmethod, initialize an empty listresultto store the solutions. - Call the
backtrackfunction with initial parameters0for the row index. - Return the
resultlist containing all distinct solutions.
Here’s the implementation of the solveNQueens method in Java:
import java.util.*;
class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> result = new ArrayList<>();
char[][] board = new char[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(board[i], '.');
}
backtrack(board, 0, result);
return result;
}
private void backtrack(char[][] board, int row, List<List<String>> result) {
int n = board.length;
if (row == n) {
result.add(constructBoard(board));
return;
}
for (int col = 0; col < n; col++) {
if (isSafe(board, row, col)) {
board[row][col] = 'Q';
backtrack(board, row + 1, result);
board[row][col] = '.';
}
}
}
private boolean isSafe(char[][] board, int row, int col) {
int n = board.length;
for (int i = 0; i < row; i++) {
if (board[i][col] == 'Q') {
return false;
}
}
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q') {
return false;
}
}
for (int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (board[i][j] == 'Q') {
return false;
}
}
return true;
}
private List<String> constructBoard(char[][] board) {
List<String> solution = new ArrayList<>();
for (char[] row : board) {
solution.add(new String(row));
}
return solution;
}
}
This implementation efficiently finds all distinct solutions to the N-Queens problem using backtracking.
-
Constructor Summary
Constructors -
Method Summary
-
Constructor Details
-
Solution
public Solution()
-
-
Method Details
-
solveNQueens
-