Class LockingTree
-
- All Implemented Interfaces:
public final class LockingTree1993 - Operations on Tree\.
Medium
You are given a tree with
nnodes numbered from0ton - 1in the form of a parent arrayparentwhereparent[i]is the parent of the <code>i<sup>th</sup></code> node. The root of the tree is node0, soparent[0] = -1since it has no parent. You want to design a data structure that allows users to lock, unlock, and upgrade nodes in the tree.The data structure should support the following functions:
Lock: Locks the given node for the given user and prevents other users from locking the same node. You may only lock a node using this function if the node is unlocked.
Unlock: Unlocks the given node for the given user. You may only unlock a node using this function if it is currently locked by the same user.
Upgrade: Locks the given node for the given user and unlocks all of its descendants regardless of who locked it. You may only upgrade a node if all 3 conditions are true:
Implement the
LockingTreeclass:LockingTree(int[] parent)initializes the data structure with the parent array.lock(int num, int user)returnstrueif it is possible for the user with iduserto lock the nodenum, orfalseotherwise. If it is possible, the nodenumwill become locked by the user with iduser.unlock(int num, int user)returnstrueif it is possible for the user with iduserto unlock the nodenum, orfalseotherwise. If it is possible, the nodenumwill become unlocked.upgrade(int num, int user)returnstrueif it is possible for the user with iduserto upgrade the nodenum, orfalseotherwise. If it is possible, the nodenumwill be upgraded.
Example 1:
Input
"LockingTree", "lock", "unlock", "unlock", "lock", "upgrade", "lock"
[[-1, 0, 0, 1, 1, 2, 2], 2, 2, 2, 3, 2, 2, 4, 5, 0, 1, 0, 1]
Output: null, true, false, true, true, true, false
Explanation:
LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]); lockingTree.lock(2, 2); // return true because node 2 is unlocked. // Node 2 will now be locked by user 2. lockingTree.unlock(2, 3); // return false because user 3 cannot unlock a node locked by user 2. lockingTree.unlock(2, 2); // return true because node 2 was previously locked by user 2. // Node 2 will now be unlocked. lockingTree.lock(4, 5); // return true because node 4 is unlocked. // Node 4 will now be locked by user 5. lockingTree.upgrade(0, 1); // return true because node 0 is unlocked and has at least one locked descendant (node 4). // Node 0 will now be locked by user 1 and node 4 will now be unlocked. lockingTree.lock(0, 1); // return false because node 0 is already locked.Constraints:
n == parent.length2 <= n <= 20000 <= parent[i] <= n - 1fori != 0parent[0] == -10 <= num <= n - 1<code>1 <= user <= 10<sup>4</sup></code>
parentrepresents a valid tree.At most
2000calls in total will be made tolock,unlock, andupgrade.