Class MedianFinder
-
- All Implemented Interfaces:
public final class MedianFinder295 - Find Median from Data Stream.
Hard
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.
For example, for
arr = [2,3,4], the median is3.For example, for
arr = [2,3], the median is(2 + 3) / 2 = 2.5.
Implement the MedianFinder class:
MedianFinder()initializes theMedianFinderobject.void addNum(int num)adds the integernumfrom the data stream to the data structure.double findMedian()returns the median of all elements so far. Answers within <code>10<sup>-5</sup></code> of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"] [ [], [1], [2], [], [3], []]Output: null, null, null, 1.5, null, 2.0
Explanation:
MedianFinder medianFinder = new MedianFinder(); medianFinder.addNum(1); // arr = [1] medianFinder.addNum(2); // arr = [1, 2] medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2) medianFinder.addNum(3); // arr[1, 2, 3] medianFinder.findMedian(); // return 2.0Constraints:
<code>-10<sup>5</sup><= num <= 10<sup>5</sup></code>
There will be at least one element in the data structure before calling
findMedian.At most <code>5 * 10<sup>4</sup></code> calls will be made to
addNumandfindMedian.
Follow up:
If all integer numbers from the stream are in the range
[0, 100], how would you optimize your solution?If
99%of all integer numbers from the stream are in the range[0, 100], how would you optimize your solution?
-
-
Constructor Summary
Constructors Constructor Description MedianFinder()
-
Method Summary
Modifier and Type Method Description final UnitaddNum(Integer num)final Unitbalance(PriorityQueue<Integer> maxHeap, PriorityQueue<Integer> minHeap)final DoublefindMedian()-
-
Method Detail
-
balance
final Unit balance(PriorityQueue<Integer> maxHeap, PriorityQueue<Integer> minHeap)
-
findMedian
final Double findMedian()
-
-
-
-