Class Solution
-
- All Implemented Interfaces:
public final class Solution3602 - Hexadecimal and Hexatrigesimal Conversion.
Easy
You are given an integer
n.Return the concatenation of the hexadecimal representation of <code>n<sup>2</sup></code> and the hexatrigesimal representation of <code>n<sup>3</sup></code>.
A hexadecimal number is defined as a base-16 numeral system that uses the digits
0 – 9and the uppercase lettersA - Fto represent values from 0 to 15.A hexatrigesimal number is defined as a base-36 numeral system that uses the digits
0 – 9and the uppercase lettersA - Zto represent values from 0 to 35.Example 1:
Input: n = 13
Output: "A91P1"
Explanation:
<code>n<sup>2</sup> = 13 * 13 = 169</code>. In hexadecimal, it converts to
(10 * 16) + 9 = 169, which corresponds to"A9".<code>n<sup>3</sup> = 13 * 13 * 13 = 2197</code>. In hexatrigesimal, it converts to <code>(1 * 36<sup>2</sup>) + (25 * 36) + 1 = 2197</code>, which corresponds to
"1P1".Concatenating both results gives
"A9" + "1P1" = "A91P1".
Example 2:
Input: n = 36
Output: "5101000"
Explanation:
<code>n<sup>2</sup> = 36 * 36 = 1296</code>. In hexadecimal, it converts to <code>(5 * 16<sup>2</sup>) + (1 * 16) + 0 = 1296</code>, which corresponds to
"510".<code>n<sup>3</sup> = 36 * 36 * 36 = 46656</code>. In hexatrigesimal, it converts to <code>(1 * 36<sup>3</sup>) + (0 * 36<sup>2</sup>) + (0 * 36) + 0 = 46656</code>, which corresponds to
"1000".Concatenating both results gives
"510" + "1000" = "5101000".
Constraints:
1 <= n <= 1000
-
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
Modifier and Type Method Description final StringconcatHex36(Integer n)-
-
Method Detail
-
concatHex36
final String concatHex36(Integer n)
-
-
-
-