Class Solution
-
- All Implemented Interfaces:
public final class Solution1818 - Minimum Absolute Sum Difference.
Medium
You are given two positive integer arrays
nums1andnums2, both of lengthn.The absolute sum difference of arrays
nums1andnums2is defined as the sum of|nums1[i] - nums2[i]|for each0 <= i < n( 0-indexed ).You can replace at most one element of
nums1with any other element innums1to minimize the absolute sum difference.Return the minimum absolute sum difference after replacing at most one element in the array
nums1. Since the answer may be large, return it modulo <code>10<sup>9</sup> + 7</code>.|x|is defined as:xifx >= 0, or-xifx < 0.
Example 1:
Input: nums1 = 1,7,5, nums2 = 2,3,5
Output: 3
Explanation: There are two possible optimal solutions:
Replace the second element with the first: 1, **7** ,5 =>1, **1** ,5, or
Replace the second element with the third: 1, **7** ,5 =>1, **5** ,5.
Both will yield an absolute sum difference of
|1-2| + (|1-3| or |5-3|) + |5-5| =3\.Example 2:
Input: nums1 = 2,4,6,8,10, nums2 = 2,4,6,8,10
Output: 0
Explanation: nums1 is equal to nums2 so no replacement is needed. This will result in an absolute sum difference of 0.
Example 3:
Input: nums1 = 1,10,4,4,2,7, nums2 = 9,3,5,1,7,4
Output: 20
Explanation: Replace the first element with the second: **1** ,10,4,4,2,7 =>**10** ,10,4,4,2,7. This yields an absolute sum difference of
|10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20Constraints:
n == nums1.lengthn == nums2.length<code>1 <= n <= 10<sup>5</sup></code>
<code>1 <= nums1i, nums2i<= 10<sup>5</sup></code>
-
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
Modifier and Type Method Description final IntegerminAbsoluteSumDiff(IntArray nums1, IntArray nums2)-
-
Method Detail
-
minAbsoluteSumDiff
final Integer minAbsoluteSumDiff(IntArray nums1, IntArray nums2)
-
-
-
-