Class Solution
-
- All Implemented Interfaces:
public final class Solution3649 - Number of Perfect Pairs.
Medium
You are given an integer array
nums.A pair of indices
(i, j)is called perfect if the following conditions are satisfied:i < jLet
a = nums[i],b = nums[j]. Then:
Return the number of distinct perfect pairs.
Note: The absolute value
|x|refers to the non-negative value ofx.Example 1:
Input: nums = 0,1,2,3
Output: 2
Explanation:
There are 2 perfect pairs:
|
(i, j)|(a, b)|min(|a − b|, |a + b|)|min(|a|, |b|)|max(|a − b|, |a + b|)|max(|a|, |b|)| |----------|-----------|-------------------------------------|-----------------|-------------------------------------|-----------------| | (1, 2) | (1, 2) |min(|1 − 2|, |1 + 2|) = 1| 1 |max(|1 − 2|, |1 + 2|) = 3| 2 | | (2, 3) | (2, 3) |min(|2 − 3|, |2 + 3|) = 1| 2 |max(|2 − 3|, |2 + 3|) = 5| 3 |Example 2:
Input: nums = -3,2,-1,4
Output: 4
Explanation:
There are 4 perfect pairs:
|
(i, j)|(a, b)|min(|a − b|, |a + b|)|min(|a|, |b|)|max(|a − b|, |a + b|)|max(|a|, |b|)| |----------|-----------|-----------------------------------------------|-----------------|-----------------------------------------------|-----------------| | (0, 1) | (-3, 2) |min(|-3 - 2|, |-3 + 2|) = 1| 2 |max(|-3 - 2|, |-3 + 2|) = 5| 3 | | (0, 3) | (-3, 4) |min(|-3 - 4|, |-3 + 4|) = 1| 3 |max(|-3 - 4|, |-3 + 4|) = 7| 4 | | (1, 2) | (2, -1) |min(|2 - (-1)|, |2 + (-1)|) = 1| 1 |max(|2 - (-1)|, |2 + (-1)|) = 3| 2 | | (1, 3) | (2, 4) |min(|2 - 4|, |2 + 4|) = 2| 2 |max(|2 - 4|, |2 + 4|) = 6| 4 |Example 3:
Input: nums = 1,10,100,1000
Output: 0
Explanation:
There are no perfect pairs. Thus, the answer is 0.
Constraints:
<code>2 <= nums.length <= 10<sup>5</sup></code>
<code>-10<sup>9</sup><= numsi<= 10<sup>9</sup></code>
-
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
Modifier and Type Method Description final LongperfectPairs(IntArray nums)-
-
Method Detail
-
perfectPairs
final Long perfectPairs(IntArray nums)
-
-
-
-