001/* 002 * Copyright (C) 2008 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except 005 * in compliance with the License. You may obtain a copy of the License at 006 * 007 * http://www.apache.org/licenses/LICENSE-2.0 008 * 009 * Unless required by applicable law or agreed to in writing, software distributed under the License 010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 011 * or implied. See the License for the specific language governing permissions and limitations under 012 * the License. 013 */ 014 015package com.google.common.net; 016 017import static com.google.common.base.Preconditions.checkArgument; 018import static com.google.common.base.Preconditions.checkNotNull; 019 020import com.google.common.annotations.Beta; 021import com.google.common.annotations.GwtIncompatible; 022import com.google.common.base.MoreObjects; 023import com.google.common.base.Splitter; 024import com.google.common.hash.Hashing; 025import com.google.common.io.ByteStreams; 026import com.google.common.primitives.Ints; 027import java.net.Inet4Address; 028import java.net.Inet6Address; 029import java.net.InetAddress; 030import java.net.UnknownHostException; 031import java.nio.ByteBuffer; 032import java.util.Arrays; 033import java.util.Locale; 034import javax.annotation.Nullable; 035 036/** 037 * Static utility methods pertaining to {@link InetAddress} instances. 038 * 039 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the methods of this class never 040 * cause DNS services to be accessed. For this reason, you should prefer these methods as much as 041 * possible over their JDK equivalents whenever you are expecting to handle only IP address string 042 * literals -- there is no blocking DNS penalty for a malformed string. 043 * 044 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address} objects as byte arrays (vis. 045 * {@code InetAddress.getAddress()}) they are 4 and 16 bytes in length, respectively, and represent 046 * the address in network byte order. 047 * 048 * <p>Examples of IP addresses and their byte representations: 049 * 050 * <dl> 051 * <dt>The IPv4 loopback address, {@code "127.0.0.1"}. 052 * <dd>{@code 7f 00 00 01} 053 * 054 * <dt>The IPv6 loopback address, {@code "::1"}. 055 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01} 056 * 057 * <dt>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}), {@code "2001:db8::1"}. 058 * <dd>{@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01} 059 * 060 * <dt>An IPv6 "IPv4 compatible" (or "compat") address, {@code "::192.168.0.1"}. 061 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01} 062 * 063 * <dt>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}. 064 * <dd>{@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01} 065 * 066 * </dl> 067 * 068 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed use in Java. 069 * 070 * <p>"IPv4 mapped" addresses were originally a representation of IPv4 addresses for use on an IPv6 071 * socket that could receive both IPv4 and IPv6 connections (by disabling the {@code IPV6_V6ONLY} 072 * socket option on an IPv6 socket). Yes, it's confusing. Nevertheless, these "mapped" addresses 073 * were never supposed to be seen on the wire. That assumption was dropped, some say mistakenly, in 074 * later RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler. 075 * 076 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire format of a "mapped" 077 * address, as shown above, and transmit it in an IPv6 packet header. However, Java's InetAddress 078 * creation methods appear to adhere doggedly to the original intent of the "mapped" address: all 079 * "mapped" addresses return {@link Inet4Address} objects. 080 * 081 * <p>For added safety, it is common for IPv6 network operators to filter all packets where either 082 * the source or destination address appears to be a "compat" or "mapped" address. Filtering 083 * suggestions usually recommend discarding any packets with source or destination addresses in the 084 * invalid range {@code ::/3}, which includes both of these bizarre address formats. For more 085 * information on "bogons", including lists of IPv6 bogon space, see: 086 * 087 * <ul> 088 * <li><a target="_parent" href="http://en.wikipedia.org/wiki/Bogon_filtering">http://en.wikipedia. 089 * org/wiki/Bogon_filtering</a> 090 * <li><a target="_parent" href="http://www.cymru.com/Bogons/ipv6.txt">http://www.cymru.com/Bogons/ 091 * ipv6.txt</a> 092 * <li><a target="_parent" href="http://www.cymru.com/Bogons/v6bogon.html">http://www.cymru.com/ 093 * Bogons/v6bogon.html</a> 094 * <li><a target="_parent" href="http://www.space.net/~gert/RIPE/ipv6-filters.html">http://www. 095 * space.net/~gert/RIPE/ipv6-filters.html</a> 096 * </ul> 097 * 098 * @author Erik Kline 099 * @since 5.0 100 */ 101@Beta 102@GwtIncompatible 103public final class InetAddresses { 104 private static final int IPV4_PART_COUNT = 4; 105 private static final int IPV6_PART_COUNT = 8; 106 private static final Splitter IPV4_SPLITTER = Splitter.on('.').limit(IPV4_PART_COUNT); 107 private static final Inet4Address LOOPBACK4 = (Inet4Address) forString("127.0.0.1"); 108 private static final Inet4Address ANY4 = (Inet4Address) forString("0.0.0.0"); 109 110 private InetAddresses() {} 111 112 /** 113 * Returns an {@link Inet4Address}, given a byte array representation of the IPv4 address. 114 * 115 * @param bytes byte array representing an IPv4 address (should be of length 4) 116 * @return {@link Inet4Address} corresponding to the supplied byte array 117 * @throws IllegalArgumentException if a valid {@link Inet4Address} can not be created 118 */ 119 private static Inet4Address getInet4Address(byte[] bytes) { 120 checkArgument( 121 bytes.length == 4, 122 "Byte array has invalid length for an IPv4 address: %s != 4.", 123 bytes.length); 124 125 // Given a 4-byte array, this cast should always succeed. 126 return (Inet4Address) bytesToInetAddress(bytes); 127 } 128 129 /** 130 * Returns the {@link InetAddress} having the given string representation. 131 * 132 * <p>This deliberately avoids all nameservice lookups (e.g. no DNS). 133 * 134 * @param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. 135 * {@code "192.168.0.1"} or {@code "2001:db8::1"} 136 * @return {@link InetAddress} representing the argument 137 * @throws IllegalArgumentException if the argument is not a valid IP string literal 138 */ 139 public static InetAddress forString(String ipString) { 140 byte[] addr = ipStringToBytes(ipString); 141 142 // The argument was malformed, i.e. not an IP string literal. 143 if (addr == null) { 144 throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString); 145 } 146 147 return bytesToInetAddress(addr); 148 } 149 150 /** 151 * Returns {@code true} if the supplied string is a valid IP string literal, {@code false} 152 * otherwise. 153 * 154 * @param ipString {@code String} to evaluated as an IP string literal 155 * @return {@code true} if the argument is a valid IP string literal 156 */ 157 public static boolean isInetAddress(String ipString) { 158 return ipStringToBytes(ipString) != null; 159 } 160 161 @Nullable 162 private static byte[] ipStringToBytes(String ipString) { 163 // Make a first pass to categorize the characters in this string. 164 boolean hasColon = false; 165 boolean hasDot = false; 166 for (int i = 0; i < ipString.length(); i++) { 167 char c = ipString.charAt(i); 168 if (c == '.') { 169 hasDot = true; 170 } else if (c == ':') { 171 if (hasDot) { 172 return null; // Colons must not appear after dots. 173 } 174 hasColon = true; 175 } else if (Character.digit(c, 16) == -1) { 176 return null; // Everything else must be a decimal or hex digit. 177 } 178 } 179 180 // Now decide which address family to parse. 181 if (hasColon) { 182 if (hasDot) { 183 ipString = convertDottedQuadToHex(ipString); 184 if (ipString == null) { 185 return null; 186 } 187 } 188 return textToNumericFormatV6(ipString); 189 } else if (hasDot) { 190 return textToNumericFormatV4(ipString); 191 } 192 return null; 193 } 194 195 @Nullable 196 private static byte[] textToNumericFormatV4(String ipString) { 197 byte[] bytes = new byte[IPV4_PART_COUNT]; 198 int i = 0; 199 try { 200 for (String octet : IPV4_SPLITTER.split(ipString)) { 201 bytes[i++] = parseOctet(octet); 202 } 203 } catch (NumberFormatException ex) { 204 return null; 205 } 206 207 return i == IPV4_PART_COUNT ? bytes : null; 208 } 209 210 @Nullable 211 private static byte[] textToNumericFormatV6(String ipString) { 212 // An address can have [2..8] colons, and N colons make N+1 parts. 213 String[] parts = ipString.split(":", IPV6_PART_COUNT + 2); 214 if (parts.length < 3 || parts.length > IPV6_PART_COUNT + 1) { 215 return null; 216 } 217 218 // Disregarding the endpoints, find "::" with nothing in between. 219 // This indicates that a run of zeroes has been skipped. 220 int skipIndex = -1; 221 for (int i = 1; i < parts.length - 1; i++) { 222 if (parts[i].length() == 0) { 223 if (skipIndex >= 0) { 224 return null; // Can't have more than one :: 225 } 226 skipIndex = i; 227 } 228 } 229 230 int partsHi; // Number of parts to copy from above/before the "::" 231 int partsLo; // Number of parts to copy from below/after the "::" 232 if (skipIndex >= 0) { 233 // If we found a "::", then check if it also covers the endpoints. 234 partsHi = skipIndex; 235 partsLo = parts.length - skipIndex - 1; 236 if (parts[0].length() == 0 && --partsHi != 0) { 237 return null; // ^: requires ^:: 238 } 239 if (parts[parts.length - 1].length() == 0 && --partsLo != 0) { 240 return null; // :$ requires ::$ 241 } 242 } else { 243 // Otherwise, allocate the entire address to partsHi. The endpoints 244 // could still be empty, but parseHextet() will check for that. 245 partsHi = parts.length; 246 partsLo = 0; 247 } 248 249 // If we found a ::, then we must have skipped at least one part. 250 // Otherwise, we must have exactly the right number of parts. 251 int partsSkipped = IPV6_PART_COUNT - (partsHi + partsLo); 252 if (!(skipIndex >= 0 ? partsSkipped >= 1 : partsSkipped == 0)) { 253 return null; 254 } 255 256 // Now parse the hextets into a byte array. 257 ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT); 258 try { 259 for (int i = 0; i < partsHi; i++) { 260 rawBytes.putShort(parseHextet(parts[i])); 261 } 262 for (int i = 0; i < partsSkipped; i++) { 263 rawBytes.putShort((short) 0); 264 } 265 for (int i = partsLo; i > 0; i--) { 266 rawBytes.putShort(parseHextet(parts[parts.length - i])); 267 } 268 } catch (NumberFormatException ex) { 269 return null; 270 } 271 return rawBytes.array(); 272 } 273 274 @Nullable 275 private static String convertDottedQuadToHex(String ipString) { 276 int lastColon = ipString.lastIndexOf(':'); 277 String initialPart = ipString.substring(0, lastColon + 1); 278 String dottedQuad = ipString.substring(lastColon + 1); 279 byte[] quad = textToNumericFormatV4(dottedQuad); 280 if (quad == null) { 281 return null; 282 } 283 String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff)); 284 String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff)); 285 return initialPart + penultimate + ":" + ultimate; 286 } 287 288 private static byte parseOctet(String ipPart) { 289 // Note: we already verified that this string contains only hex digits. 290 int octet = Integer.parseInt(ipPart); 291 // Disallow leading zeroes, because no clear standard exists on 292 // whether these should be interpreted as decimal or octal. 293 if (octet > 255 || (ipPart.startsWith("0") && ipPart.length() > 1)) { 294 throw new NumberFormatException(); 295 } 296 return (byte) octet; 297 } 298 299 private static short parseHextet(String ipPart) { 300 // Note: we already verified that this string contains only hex digits. 301 int hextet = Integer.parseInt(ipPart, 16); 302 if (hextet > 0xffff) { 303 throw new NumberFormatException(); 304 } 305 return (short) hextet; 306 } 307 308 /** 309 * Convert a byte array into an InetAddress. 310 * 311 * {@link InetAddress#getByAddress} is documented as throwing a checked exception 312 * "if IP address is of illegal length." We replace it with an unchecked exception, for use by 313 * callers who already know that addr is an array of length 4 or 16. 314 * 315 * @param addr the raw 4-byte or 16-byte IP address in big-endian order 316 * @return an InetAddress object created from the raw IP address 317 */ 318 private static InetAddress bytesToInetAddress(byte[] addr) { 319 try { 320 return InetAddress.getByAddress(addr); 321 } catch (UnknownHostException e) { 322 throw new AssertionError(e); 323 } 324 } 325 326 /** 327 * Returns the string representation of an {@link InetAddress}. 328 * 329 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 330 * addresses, the output follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a> section 331 * 4. The main difference is that this method uses "::" for zero compression, while Java's version 332 * uses the uncompressed form. 333 * 334 * <p>This method uses hexadecimal for all IPv6 addresses, including IPv4-mapped IPv6 addresses 335 * such as "::c000:201". The output does not include a Scope ID. 336 * 337 * @param ip {@link InetAddress} to be converted to an address string 338 * @return {@code String} containing the text-formatted IP address 339 * @since 10.0 340 */ 341 public static String toAddrString(InetAddress ip) { 342 checkNotNull(ip); 343 if (ip instanceof Inet4Address) { 344 // For IPv4, Java's formatting is good enough. 345 return ip.getHostAddress(); 346 } 347 checkArgument(ip instanceof Inet6Address); 348 byte[] bytes = ip.getAddress(); 349 int[] hextets = new int[IPV6_PART_COUNT]; 350 for (int i = 0; i < hextets.length; i++) { 351 hextets[i] = Ints.fromBytes((byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]); 352 } 353 compressLongestRunOfZeroes(hextets); 354 return hextetsToIPv6String(hextets); 355 } 356 357 /** 358 * Identify and mark the longest run of zeroes in an IPv6 address. 359 * 360 * <p>Only runs of two or more hextets are considered. In case of a tie, the leftmost run wins. If 361 * a qualifying run is found, its hextets are replaced by the sentinel value -1. 362 * 363 * @param hextets {@code int[]} mutable array of eight 16-bit hextets 364 */ 365 private static void compressLongestRunOfZeroes(int[] hextets) { 366 int bestRunStart = -1; 367 int bestRunLength = -1; 368 int runStart = -1; 369 for (int i = 0; i < hextets.length + 1; i++) { 370 if (i < hextets.length && hextets[i] == 0) { 371 if (runStart < 0) { 372 runStart = i; 373 } 374 } else if (runStart >= 0) { 375 int runLength = i - runStart; 376 if (runLength > bestRunLength) { 377 bestRunStart = runStart; 378 bestRunLength = runLength; 379 } 380 runStart = -1; 381 } 382 } 383 if (bestRunLength >= 2) { 384 Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1); 385 } 386 } 387 388 /** 389 * Convert a list of hextets into a human-readable IPv6 address. 390 * 391 * <p>In order for "::" compression to work, the input should contain negative sentinel values in 392 * place of the elided zeroes. 393 * 394 * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s 395 */ 396 private static String hextetsToIPv6String(int[] hextets) { 397 // While scanning the array, handle these state transitions: 398 // start->num => "num" start->gap => "::" 399 // num->num => ":num" num->gap => "::" 400 // gap->num => "num" gap->gap => "" 401 StringBuilder buf = new StringBuilder(39); 402 boolean lastWasNumber = false; 403 for (int i = 0; i < hextets.length; i++) { 404 boolean thisIsNumber = hextets[i] >= 0; 405 if (thisIsNumber) { 406 if (lastWasNumber) { 407 buf.append(':'); 408 } 409 buf.append(Integer.toHexString(hextets[i])); 410 } else { 411 if (i == 0 || lastWasNumber) { 412 buf.append("::"); 413 } 414 } 415 lastWasNumber = thisIsNumber; 416 } 417 return buf.toString(); 418 } 419 420 /** 421 * Returns the string representation of an {@link InetAddress} suitable for inclusion in a URI. 422 * 423 * <p>For IPv4 addresses, this is identical to {@link InetAddress#getHostAddress()}, but for IPv6 424 * addresses it compresses zeroes and surrounds the text with square brackets; for example 425 * {@code "[2001:db8::1]"}. 426 * 427 * <p>Per section 3.2.2 of 428 * <a target="_parent" href="http://tools.ietf.org/html/rfc3986#section-3.2.2">RFC 3986</a>, a URI 429 * containing an IPv6 string literal is of the form 430 * {@code "http://[2001:db8::1]:8888/index.html"}. 431 * 432 * <p>Use of either {@link InetAddresses#toAddrString}, {@link InetAddress#getHostAddress()}, or 433 * this method is recommended over {@link InetAddress#toString()} when an IP address string 434 * literal is desired. This is because {@link InetAddress#toString()} prints the hostname and the 435 * IP address string joined by a "/". 436 * 437 * @param ip {@link InetAddress} to be converted to URI string literal 438 * @return {@code String} containing URI-safe string literal 439 */ 440 public static String toUriString(InetAddress ip) { 441 if (ip instanceof Inet6Address) { 442 return "[" + toAddrString(ip) + "]"; 443 } 444 return toAddrString(ip); 445 } 446 447 /** 448 * Returns an InetAddress representing the literal IPv4 or IPv6 host portion of a URL, encoded in 449 * the format specified by RFC 3986 section 3.2.2. 450 * 451 * <p>This function is similar to {@link InetAddresses#forString(String)}, however, it requires 452 * that IPv6 addresses are surrounded by square brackets. 453 * 454 * <p>This function is the inverse of {@link InetAddresses#toUriString(java.net.InetAddress)}. 455 * 456 * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address 457 * @return an InetAddress representing the address in {@code hostAddr} 458 * @throws IllegalArgumentException if {@code hostAddr} is not a valid IPv4 address, or IPv6 459 * address surrounded by square brackets 460 */ 461 public static InetAddress forUriString(String hostAddr) { 462 InetAddress addr = forUriStringNoThrow(hostAddr); 463 if (addr == null) { 464 throw formatIllegalArgumentException("Not a valid URI IP literal: '%s'", hostAddr); 465 } 466 467 return addr; 468 } 469 470 @Nullable 471 private static InetAddress forUriStringNoThrow(String hostAddr) { 472 checkNotNull(hostAddr); 473 474 // Decide if this should be an IPv6 or IPv4 address. 475 String ipString; 476 int expectBytes; 477 if (hostAddr.startsWith("[") && hostAddr.endsWith("]")) { 478 ipString = hostAddr.substring(1, hostAddr.length() - 1); 479 expectBytes = 16; 480 } else { 481 ipString = hostAddr; 482 expectBytes = 4; 483 } 484 485 // Parse the address, and make sure the length/version is correct. 486 byte[] addr = ipStringToBytes(ipString); 487 if (addr == null || addr.length != expectBytes) { 488 return null; 489 } 490 491 return bytesToInetAddress(addr); 492 } 493 494 /** 495 * Returns {@code true} if the supplied string is a valid URI IP string literal, {@code false} 496 * otherwise. 497 * 498 * @param ipString {@code String} to evaluated as an IP URI host string literal 499 * @return {@code true} if the argument is a valid IP URI host 500 */ 501 public static boolean isUriInetAddress(String ipString) { 502 return forUriStringNoThrow(ipString) != null; 503 } 504 505 /** 506 * Evaluates whether the argument is an IPv6 "compat" address. 507 * 508 * <p>An "IPv4 compatible", or "compat", address is one with 96 leading bits of zero, with the 509 * remaining 32 bits interpreted as an IPv4 address. These are conventionally represented in 510 * string literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is also considered an 511 * IPv4 compatible address (and equivalent to {@code "::192.168.0.1"}). 512 * 513 * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of 514 * <a target="_parent" href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1">RFC 4291</a>. 515 * 516 * <p>NOTE: This method is different from {@link Inet6Address#isIPv4CompatibleAddress} in that it 517 * more correctly classifies {@code "::"} and {@code "::1"} as proper IPv6 addresses (which they 518 * are), NOT IPv4 compatible addresses (which they are generally NOT considered to be). 519 * 520 * @param ip {@link Inet6Address} to be examined for embedded IPv4 compatible address format 521 * @return {@code true} if the argument is a valid "compat" address 522 */ 523 public static boolean isCompatIPv4Address(Inet6Address ip) { 524 if (!ip.isIPv4CompatibleAddress()) { 525 return false; 526 } 527 528 byte[] bytes = ip.getAddress(); 529 if ((bytes[12] == 0) 530 && (bytes[13] == 0) 531 && (bytes[14] == 0) 532 && ((bytes[15] == 0) || (bytes[15] == 1))) { 533 return false; 534 } 535 536 return true; 537 } 538 539 /** 540 * Returns the IPv4 address embedded in an IPv4 compatible address. 541 * 542 * @param ip {@link Inet6Address} to be examined for an embedded IPv4 address 543 * @return {@link Inet4Address} of the embedded IPv4 address 544 * @throws IllegalArgumentException if the argument is not a valid IPv4 compatible address 545 */ 546 public static Inet4Address getCompatIPv4Address(Inet6Address ip) { 547 checkArgument( 548 isCompatIPv4Address(ip), "Address '%s' is not IPv4-compatible.", toAddrString(ip)); 549 550 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 551 } 552 553 /** 554 * Evaluates whether the argument is a 6to4 address. 555 * 556 * <p>6to4 addresses begin with the {@code "2002::/16"} prefix. The next 32 bits are the IPv4 557 * address of the host to which IPv6-in-IPv4 tunneled packets should be routed. 558 * 559 * <p>For more on 6to4 addresses see section 2 of 560 * <a target="_parent" href="http://tools.ietf.org/html/rfc3056#section-2">RFC 3056</a>. 561 * 562 * @param ip {@link Inet6Address} to be examined for 6to4 address format 563 * @return {@code true} if the argument is a 6to4 address 564 */ 565 public static boolean is6to4Address(Inet6Address ip) { 566 byte[] bytes = ip.getAddress(); 567 return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02); 568 } 569 570 /** 571 * Returns the IPv4 address embedded in a 6to4 address. 572 * 573 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in 6to4 address 574 * @return {@link Inet4Address} of embedded IPv4 in 6to4 address 575 * @throws IllegalArgumentException if the argument is not a valid IPv6 6to4 address 576 */ 577 public static Inet4Address get6to4IPv4Address(Inet6Address ip) { 578 checkArgument(is6to4Address(ip), "Address '%s' is not a 6to4 address.", toAddrString(ip)); 579 580 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 2, 6)); 581 } 582 583 /** 584 * A simple immutable data class to encapsulate the information to be found in a Teredo address. 585 * 586 * <p>All of the fields in this class are encoded in various portions of the IPv6 address as part 587 * of the protocol. More protocols details can be found at: 588 * <a target="_parent" href="http://en.wikipedia.org/wiki/Teredo_tunneling">http://en.wikipedia. 589 * org/wiki/Teredo_tunneling</a>. 590 * 591 * <p>The RFC can be found here: 592 * <a target="_parent" href="http://tools.ietf.org/html/rfc4380">RFC 4380</a>. 593 * 594 * @since 5.0 595 */ 596 @Beta 597 public static final class TeredoInfo { 598 private final Inet4Address server; 599 private final Inet4Address client; 600 private final int port; 601 private final int flags; 602 603 /** 604 * Constructs a TeredoInfo instance. 605 * 606 * <p>Both server and client can be {@code null}, in which case the value {@code "0.0.0.0"} will 607 * be assumed. 608 * 609 * @throws IllegalArgumentException if either of the {@code port} or the {@code flags} arguments 610 * are out of range of an unsigned short 611 */ 612 // TODO: why is this public? 613 public TeredoInfo( 614 @Nullable Inet4Address server, @Nullable Inet4Address client, int port, int flags) { 615 checkArgument( 616 (port >= 0) && (port <= 0xffff), "port '%s' is out of range (0 <= port <= 0xffff)", port); 617 checkArgument( 618 (flags >= 0) && (flags <= 0xffff), 619 "flags '%s' is out of range (0 <= flags <= 0xffff)", 620 flags); 621 622 this.server = MoreObjects.firstNonNull(server, ANY4); 623 this.client = MoreObjects.firstNonNull(client, ANY4); 624 this.port = port; 625 this.flags = flags; 626 } 627 628 public Inet4Address getServer() { 629 return server; 630 } 631 632 public Inet4Address getClient() { 633 return client; 634 } 635 636 public int getPort() { 637 return port; 638 } 639 640 public int getFlags() { 641 return flags; 642 } 643 } 644 645 /** 646 * Evaluates whether the argument is a Teredo address. 647 * 648 * <p>Teredo addresses begin with the {@code "2001::/32"} prefix. 649 * 650 * @param ip {@link Inet6Address} to be examined for Teredo address format 651 * @return {@code true} if the argument is a Teredo address 652 */ 653 public static boolean isTeredoAddress(Inet6Address ip) { 654 byte[] bytes = ip.getAddress(); 655 return (bytes[0] == (byte) 0x20) 656 && (bytes[1] == (byte) 0x01) 657 && (bytes[2] == 0) 658 && (bytes[3] == 0); 659 } 660 661 /** 662 * Returns the Teredo information embedded in a Teredo address. 663 * 664 * @param ip {@link Inet6Address} to be examined for embedded Teredo information 665 * @return extracted {@code TeredoInfo} 666 * @throws IllegalArgumentException if the argument is not a valid IPv6 Teredo address 667 */ 668 public static TeredoInfo getTeredoInfo(Inet6Address ip) { 669 checkArgument(isTeredoAddress(ip), "Address '%s' is not a Teredo address.", toAddrString(ip)); 670 671 byte[] bytes = ip.getAddress(); 672 Inet4Address server = getInet4Address(Arrays.copyOfRange(bytes, 4, 8)); 673 674 int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff; 675 676 // Teredo obfuscates the mapped client port, per section 4 of the RFC. 677 int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff; 678 679 byte[] clientBytes = Arrays.copyOfRange(bytes, 12, 16); 680 for (int i = 0; i < clientBytes.length; i++) { 681 // Teredo obfuscates the mapped client IP, per section 4 of the RFC. 682 clientBytes[i] = (byte) ~clientBytes[i]; 683 } 684 Inet4Address client = getInet4Address(clientBytes); 685 686 return new TeredoInfo(server, client, port, flags); 687 } 688 689 /** 690 * Evaluates whether the argument is an ISATAP address. 691 * 692 * <p>From RFC 5214: "ISATAP interface identifiers are constructed in Modified EUI-64 format [...] 693 * by concatenating the 24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit 694 * IPv4 address in network byte order [...]" 695 * 696 * <p>For more on ISATAP addresses see section 6.1 of 697 * <a target="_parent" href="http://tools.ietf.org/html/rfc5214#section-6.1">RFC 5214</a>. 698 * 699 * @param ip {@link Inet6Address} to be examined for ISATAP address format 700 * @return {@code true} if the argument is an ISATAP address 701 */ 702 public static boolean isIsatapAddress(Inet6Address ip) { 703 704 // If it's a Teredo address with the right port (41217, or 0xa101) 705 // which would be encoded as 0x5efe then it can't be an ISATAP address. 706 if (isTeredoAddress(ip)) { 707 return false; 708 } 709 710 byte[] bytes = ip.getAddress(); 711 712 if ((bytes[8] | (byte) 0x03) != (byte) 0x03) { 713 714 // Verify that high byte of the 64 bit identifier is zero, modulo 715 // the U/L and G bits, with which we are not concerned. 716 return false; 717 } 718 719 return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e) && (bytes[11] == (byte) 0xfe); 720 } 721 722 /** 723 * Returns the IPv4 address embedded in an ISATAP address. 724 * 725 * @param ip {@link Inet6Address} to be examined for embedded IPv4 in ISATAP address 726 * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address 727 * @throws IllegalArgumentException if the argument is not a valid IPv6 ISATAP address 728 */ 729 public static Inet4Address getIsatapIPv4Address(Inet6Address ip) { 730 checkArgument(isIsatapAddress(ip), "Address '%s' is not an ISATAP address.", toAddrString(ip)); 731 732 return getInet4Address(Arrays.copyOfRange(ip.getAddress(), 12, 16)); 733 } 734 735 /** 736 * Examines the Inet6Address to determine if it is an IPv6 address of one of the specified address 737 * types that contain an embedded IPv4 address. 738 * 739 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 740 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 741 * BGP routing table. 742 * 743 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 744 * @return {@code true} if there is an embedded IPv4 client address 745 * @since 7.0 746 */ 747 public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) { 748 return isCompatIPv4Address(ip) || is6to4Address(ip) || isTeredoAddress(ip); 749 } 750 751 /** 752 * Examines the Inet6Address to extract the embedded IPv4 client address if the InetAddress is an 753 * IPv6 address of one of the specified address types that contain an embedded IPv4 address. 754 * 755 * <p>NOTE: ISATAP addresses are explicitly excluded from this method due to their trivial 756 * spoofability. With other transition addresses spoofing involves (at least) infection of one's 757 * BGP routing table. 758 * 759 * @param ip {@link Inet6Address} to be examined for embedded IPv4 client address 760 * @return {@link Inet4Address} of embedded IPv4 client address 761 * @throws IllegalArgumentException if the argument does not have a valid embedded IPv4 address 762 */ 763 public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) { 764 if (isCompatIPv4Address(ip)) { 765 return getCompatIPv4Address(ip); 766 } 767 768 if (is6to4Address(ip)) { 769 return get6to4IPv4Address(ip); 770 } 771 772 if (isTeredoAddress(ip)) { 773 return getTeredoInfo(ip).getClient(); 774 } 775 776 throw formatIllegalArgumentException("'%s' has no embedded IPv4 address.", toAddrString(ip)); 777 } 778 779 /** 780 * Evaluates whether the argument is an "IPv4 mapped" IPv6 address. 781 * 782 * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96 (sometimes written as 783 * ::ffff:0.0.0.0/96), with the last 32 bits interpreted as an IPv4 address. 784 * 785 * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of 786 * <a target="_parent" href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2">RFC 4291</a>. 787 * 788 * <p>Note: This method takes a {@code String} argument because {@link InetAddress} automatically 789 * collapses mapped addresses to IPv4. (It is actually possible to avoid this using one of the 790 * obscure {@link Inet6Address} methods, but it would be unwise to depend on such a 791 * poorly-documented feature.) 792 * 793 * @param ipString {@code String} to be examined for embedded IPv4-mapped IPv6 address format 794 * @return {@code true} if the argument is a valid "mapped" address 795 * @since 10.0 796 */ 797 public static boolean isMappedIPv4Address(String ipString) { 798 byte[] bytes = ipStringToBytes(ipString); 799 if (bytes != null && bytes.length == 16) { 800 for (int i = 0; i < 10; i++) { 801 if (bytes[i] != 0) { 802 return false; 803 } 804 } 805 for (int i = 10; i < 12; i++) { 806 if (bytes[i] != (byte) 0xff) { 807 return false; 808 } 809 } 810 return true; 811 } 812 return false; 813 } 814 815 /** 816 * Coerces an IPv6 address into an IPv4 address. 817 * 818 * <p>HACK: As long as applications continue to use IPv4 addresses for indexing into tables, 819 * accounting, et cetera, it may be necessary to <b>coerce</b> IPv6 addresses into IPv4 addresses. 820 * This function does so by hashing the upper 64 bits into {@code 224.0.0.0/3} (64 bits into 29 821 * bits). 822 * 823 * <p>A "coerced" IPv4 address is equivalent to itself. 824 * 825 * <p>NOTE: This function is failsafe for security purposes: ALL IPv6 addresses (except localhost 826 * (::1)) are hashed to avoid the security risk associated with extracting an embedded IPv4 827 * address that might permit elevated privileges. 828 * 829 * @param ip {@link InetAddress} to "coerce" 830 * @return {@link Inet4Address} represented "coerced" address 831 * @since 7.0 832 */ 833 public static Inet4Address getCoercedIPv4Address(InetAddress ip) { 834 if (ip instanceof Inet4Address) { 835 return (Inet4Address) ip; 836 } 837 838 // Special cases: 839 byte[] bytes = ip.getAddress(); 840 boolean leadingBytesOfZero = true; 841 for (int i = 0; i < 15; ++i) { 842 if (bytes[i] != 0) { 843 leadingBytesOfZero = false; 844 break; 845 } 846 } 847 if (leadingBytesOfZero && (bytes[15] == 1)) { 848 return LOOPBACK4; // ::1 849 } else if (leadingBytesOfZero && (bytes[15] == 0)) { 850 return ANY4; // ::0 851 } 852 853 Inet6Address ip6 = (Inet6Address) ip; 854 long addressAsLong = 0; 855 if (hasEmbeddedIPv4ClientAddress(ip6)) { 856 addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode(); 857 } else { 858 859 // Just extract the high 64 bits (assuming the rest is user-modifiable). 860 addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong(); 861 } 862 863 // Many strategies for hashing are possible. This might suffice for now. 864 int coercedHash = Hashing.murmur3_32().hashLong(addressAsLong).asInt(); 865 866 // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3). 867 coercedHash |= 0xe0000000; 868 869 // Fixup to avoid some "illegal" values. Currently the only potential 870 // illegal value is 255.255.255.255. 871 if (coercedHash == 0xffffffff) { 872 coercedHash = 0xfffffffe; 873 } 874 875 return getInet4Address(Ints.toByteArray(coercedHash)); 876 } 877 878 /** 879 * Returns an integer representing an IPv4 address regardless of whether the supplied argument is 880 * an IPv4 address or not. 881 * 882 * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being converted to integers. 883 * 884 * <p>As long as there are applications that assume that all IP addresses are IPv4 addresses and 885 * can therefore be converted safely to integers (for whatever purpose) this function can be used 886 * to handle IPv6 addresses as well until the application is suitably fixed. 887 * 888 * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used for such purposes as 889 * rudimentary identification or indexing into a collection of real {@link InetAddress}es. They 890 * cannot be used as real addresses for the purposes of network communication. 891 * 892 * @param ip {@link InetAddress} to convert 893 * @return {@code int}, "coerced" if ip is not an IPv4 address 894 * @since 7.0 895 */ 896 public static int coerceToInteger(InetAddress ip) { 897 return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt(); 898 } 899 900 /** 901 * Returns an Inet4Address having the integer value specified by the argument. 902 * 903 * @param address {@code int}, the 32bit integer address to be converted 904 * @return {@link Inet4Address} equivalent of the argument 905 */ 906 public static Inet4Address fromInteger(int address) { 907 return getInet4Address(Ints.toByteArray(address)); 908 } 909 910 /** 911 * Returns an address from a <b>little-endian ordered</b> byte array (the opposite of what 912 * {@link InetAddress#getByAddress} expects). 913 * 914 * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array must be 16 bytes long. 915 * 916 * @param addr the raw IP address in little-endian byte order 917 * @return an InetAddress object created from the raw IP address 918 * @throws UnknownHostException if IP address is of illegal length 919 */ 920 public static InetAddress fromLittleEndianByteArray(byte[] addr) throws UnknownHostException { 921 byte[] reversed = new byte[addr.length]; 922 for (int i = 0; i < addr.length; i++) { 923 reversed[i] = addr[addr.length - i - 1]; 924 } 925 return InetAddress.getByAddress(reversed); 926 } 927 928 /** 929 * Returns a new InetAddress that is one less than the passed in address. This method works for 930 * both IPv4 and IPv6 addresses. 931 * 932 * @param address the InetAddress to decrement 933 * @return a new InetAddress that is one less than the passed in address 934 * @throws IllegalArgumentException if InetAddress is at the beginning of its range 935 * @since 18.0 936 */ 937 public static InetAddress decrement(InetAddress address) { 938 byte[] addr = address.getAddress(); 939 int i = addr.length - 1; 940 while (i >= 0 && addr[i] == (byte) 0x00) { 941 addr[i] = (byte) 0xff; 942 i--; 943 } 944 945 checkArgument(i >= 0, "Decrementing %s would wrap.", address); 946 947 addr[i]--; 948 return bytesToInetAddress(addr); 949 } 950 951 /** 952 * Returns a new InetAddress that is one more than the passed in address. This method works for 953 * both IPv4 and IPv6 addresses. 954 * 955 * @param address the InetAddress to increment 956 * @return a new InetAddress that is one more than the passed in address 957 * @throws IllegalArgumentException if InetAddress is at the end of its range 958 * @since 10.0 959 */ 960 public static InetAddress increment(InetAddress address) { 961 byte[] addr = address.getAddress(); 962 int i = addr.length - 1; 963 while (i >= 0 && addr[i] == (byte) 0xff) { 964 addr[i] = 0; 965 i--; 966 } 967 968 checkArgument(i >= 0, "Incrementing %s would wrap.", address); 969 970 addr[i]++; 971 return bytesToInetAddress(addr); 972 } 973 974 /** 975 * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or 976 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. 977 * 978 * @return true if the InetAddress is either 255.255.255.255 for IPv4 or 979 * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6 980 * @since 10.0 981 */ 982 public static boolean isMaximum(InetAddress address) { 983 byte[] addr = address.getAddress(); 984 for (int i = 0; i < addr.length; i++) { 985 if (addr[i] != (byte) 0xff) { 986 return false; 987 } 988 } 989 return true; 990 } 991 992 private static IllegalArgumentException formatIllegalArgumentException( 993 String format, Object... args) { 994 return new IllegalArgumentException(String.format(Locale.ROOT, format, args)); 995 } 996}