001/*
002 * Copyright (C) 2009 The Guava Authors
003 *
004 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
005 * in compliance with the License. You may obtain a copy of the License at
006 *
007 * http://www.apache.org/licenses/LICENSE-2.0
008 *
009 * Unless required by applicable law or agreed to in writing, software distributed under the License
010 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
011 * or implied. See the License for the specific language governing permissions and limitations under
012 * the License.
013 */
014
015package com.google.common.primitives;
016
017import static com.google.common.base.Preconditions.checkArgument;
018import static com.google.common.base.Preconditions.checkNotNull;
019import static com.google.common.base.Preconditions.checkPositionIndexes;
020import static java.util.Objects.requireNonNull;
021
022import com.google.common.annotations.GwtIncompatible;
023import com.google.common.annotations.J2ktIncompatible;
024import com.google.common.annotations.VisibleForTesting;
025import com.google.errorprone.annotations.CanIgnoreReturnValue;
026import java.nio.ByteOrder;
027import java.util.Arrays;
028import java.util.Comparator;
029import sun.misc.Unsafe;
030
031/**
032 * Static utility methods pertaining to {@code byte} primitives that interpret values as
033 * <i>unsigned</i> (that is, any negative value {@code b} is treated as the positive value {@code
034 * 256 + b}). The corresponding methods that treat the values as signed are found in {@link
035 * SignedBytes}, and the methods for which signedness is not an issue are in {@link Bytes}.
036 *
037 * <p>See the Guava User Guide article on <a
038 * href="https://github.com/google/guava/wiki/PrimitivesExplained">primitive utilities</a>.
039 *
040 * @author Kevin Bourrillion
041 * @author Martin Buchholz
042 * @author Hiroshi Yamauchi
043 * @author Louis Wasserman
044 * @since 1.0
045 */
046@J2ktIncompatible
047@GwtIncompatible
048@ElementTypesAreNonnullByDefault
049public final class UnsignedBytes {
050  private UnsignedBytes() {}
051
052  /**
053   * The largest power of two that can be represented as an unsigned {@code byte}.
054   *
055   * @since 10.0
056   */
057  public static final byte MAX_POWER_OF_TWO = (byte) 0x80;
058
059  /**
060   * The largest value that fits into an unsigned byte.
061   *
062   * @since 13.0
063   */
064  public static final byte MAX_VALUE = (byte) 0xFF;
065
066  private static final int UNSIGNED_MASK = 0xFF;
067
068  /**
069   * Returns the value of the given byte as an integer, when treated as unsigned. That is, returns
070   * {@code value + 256} if {@code value} is negative; {@code value} itself otherwise.
071   *
072   * <p><b>Java 8 users:</b> use {@link Byte#toUnsignedInt(byte)} instead.
073   *
074   * @since 6.0
075   */
076  public static int toInt(byte value) {
077    return value & UNSIGNED_MASK;
078  }
079
080  /**
081   * Returns the {@code byte} value that, when treated as unsigned, is equal to {@code value}, if
082   * possible.
083   *
084   * @param value a value between 0 and 255 inclusive
085   * @return the {@code byte} value that, when treated as unsigned, equals {@code value}
086   * @throws IllegalArgumentException if {@code value} is negative or greater than 255
087   */
088  @CanIgnoreReturnValue
089  public static byte checkedCast(long value) {
090    checkArgument(value >> Byte.SIZE == 0, "out of range: %s", value);
091    return (byte) value;
092  }
093
094  /**
095   * Returns the {@code byte} value that, when treated as unsigned, is nearest in value to {@code
096   * value}.
097   *
098   * @param value any {@code long} value
099   * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if {@code value <= 0}, and
100   *     {@code value} cast to {@code byte} otherwise
101   */
102  public static byte saturatedCast(long value) {
103    if (value > toInt(MAX_VALUE)) {
104      return MAX_VALUE; // -1
105    }
106    if (value < 0) {
107      return (byte) 0;
108    }
109    return (byte) value;
110  }
111
112  /**
113   * Compares the two specified {@code byte} values, treating them as unsigned values between 0 and
114   * 255 inclusive. For example, {@code (byte) -127} is considered greater than {@code (byte) 127}
115   * because it is seen as having the value of positive {@code 129}.
116   *
117   * @param a the first {@code byte} to compare
118   * @param b the second {@code byte} to compare
119   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
120   *     greater than {@code b}; or zero if they are equal
121   */
122  public static int compare(byte a, byte b) {
123    return toInt(a) - toInt(b);
124  }
125
126  /**
127   * Returns the least value present in {@code array}, treating values as unsigned.
128   *
129   * @param array a <i>nonempty</i> array of {@code byte} values
130   * @return the value present in {@code array} that is less than or equal to every other value in
131   *     the array according to {@link #compare}
132   * @throws IllegalArgumentException if {@code array} is empty
133   */
134  public static byte min(byte... array) {
135    checkArgument(array.length > 0);
136    int min = toInt(array[0]);
137    for (int i = 1; i < array.length; i++) {
138      int next = toInt(array[i]);
139      if (next < min) {
140        min = next;
141      }
142    }
143    return (byte) min;
144  }
145
146  /**
147   * Returns the greatest value present in {@code array}, treating values as unsigned.
148   *
149   * @param array a <i>nonempty</i> array of {@code byte} values
150   * @return the value present in {@code array} that is greater than or equal to every other value
151   *     in the array according to {@link #compare}
152   * @throws IllegalArgumentException if {@code array} is empty
153   */
154  public static byte max(byte... array) {
155    checkArgument(array.length > 0);
156    int max = toInt(array[0]);
157    for (int i = 1; i < array.length; i++) {
158      int next = toInt(array[i]);
159      if (next > max) {
160        max = next;
161      }
162    }
163    return (byte) max;
164  }
165
166  /**
167   * Returns a string representation of x, where x is treated as unsigned.
168   *
169   * @since 13.0
170   */
171  public static String toString(byte x) {
172    return toString(x, 10);
173  }
174
175  /**
176   * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as
177   * unsigned.
178   *
179   * @param x the value to convert to a string.
180   * @param radix the radix to use while working with {@code x}
181   * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
182   *     and {@link Character#MAX_RADIX}.
183   * @since 13.0
184   */
185  public static String toString(byte x, int radix) {
186    checkArgument(
187        radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
188        "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX",
189        radix);
190    // Benchmarks indicate this is probably not worth optimizing.
191    return Integer.toString(toInt(x), radix);
192  }
193
194  /**
195   * Returns the unsigned {@code byte} value represented by the given decimal string.
196   *
197   * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
198   *     value
199   * @throws NullPointerException if {@code string} is null (in contrast to {@link
200   *     Byte#parseByte(String)})
201   * @since 13.0
202   */
203  @CanIgnoreReturnValue
204  public static byte parseUnsignedByte(String string) {
205    return parseUnsignedByte(string, 10);
206  }
207
208  /**
209   * Returns the unsigned {@code byte} value represented by a string with the given radix.
210   *
211   * @param string the string containing the unsigned {@code byte} representation to be parsed.
212   * @param radix the radix to use while parsing {@code string}
213   * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte} with
214   *     the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and {@link
215   *     Character#MAX_RADIX}.
216   * @throws NullPointerException if {@code string} is null (in contrast to {@link
217   *     Byte#parseByte(String)})
218   * @since 13.0
219   */
220  @CanIgnoreReturnValue
221  public static byte parseUnsignedByte(String string, int radix) {
222    int parse = Integer.parseInt(checkNotNull(string), radix);
223    // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =(
224    if (parse >> Byte.SIZE == 0) {
225      return (byte) parse;
226    } else {
227      throw new NumberFormatException("out of range: " + parse);
228    }
229  }
230
231  /**
232   * Returns a string containing the supplied {@code byte} values separated by {@code separator}.
233   * For example, {@code join(":", (byte) 1, (byte) 2, (byte) 255)} returns the string {@code
234   * "1:2:255"}.
235   *
236   * @param separator the text that should appear between consecutive values in the resulting string
237   *     (but not at the start or end)
238   * @param array an array of {@code byte} values, possibly empty
239   */
240  public static String join(String separator, byte... array) {
241    checkNotNull(separator);
242    if (array.length == 0) {
243      return "";
244    }
245
246    // For pre-sizing a builder, just get the right order of magnitude
247    StringBuilder builder = new StringBuilder(array.length * (3 + separator.length()));
248    builder.append(toInt(array[0]));
249    for (int i = 1; i < array.length; i++) {
250      builder.append(separator).append(toString(array[i]));
251    }
252    return builder.toString();
253  }
254
255  /**
256   * Returns a comparator that compares two {@code byte} arrays <a
257   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
258   * compares, using {@link #compare(byte, byte)}), the first pair of values that follow any common
259   * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For
260   * example, {@code [] < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02]}. Values are treated as
261   * unsigned.
262   *
263   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
264   * support only identity equality), but it is consistent with {@link
265   * java.util.Arrays#equals(byte[], byte[])}.
266   *
267   * @since 2.0
268   */
269  public static Comparator<byte[]> lexicographicalComparator() {
270    return LexicographicalComparatorHolder.BEST_COMPARATOR;
271  }
272
273  @VisibleForTesting
274  static Comparator<byte[]> lexicographicalComparatorJavaImpl() {
275    return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
276  }
277
278  /**
279   * Provides a lexicographical comparator implementation; either a Java implementation or a faster
280   * implementation based on {@link Unsafe}.
281   *
282   * <p>Uses reflection to gracefully fall back to the Java implementation if {@code Unsafe} isn't
283   * available.
284   */
285  @VisibleForTesting
286  static class LexicographicalComparatorHolder {
287    static final String UNSAFE_COMPARATOR_NAME =
288        LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
289
290    static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator();
291
292    @VisibleForTesting
293    enum UnsafeComparator implements Comparator<byte[]> {
294      INSTANCE;
295
296      static final boolean BIG_ENDIAN = ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN);
297
298      /*
299       * The following static final fields exist for performance reasons.
300       *
301       * In UnsignedBytesBenchmark, accessing the following objects via static final fields is the
302       * fastest (more than twice as fast as the Java implementation, vs ~1.5x with non-final static
303       * fields, on x86_32) under the Hotspot server compiler. The reason is obviously that the
304       * non-final fields need to be reloaded inside the loop.
305       *
306       * And, no, defining (final or not) local variables out of the loop still isn't as good
307       * because the null check on the theUnsafe object remains inside the loop and
308       * BYTE_ARRAY_BASE_OFFSET doesn't get constant-folded.
309       *
310       * The compiler can treat static final fields as compile-time constants and can constant-fold
311       * them while (final or not) local variables are run time values.
312       */
313
314      static final Unsafe theUnsafe = getUnsafe();
315
316      /** The offset to the first element in a byte array. */
317      static final int BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
318
319      static {
320        // fall back to the safer pure java implementation unless we're in
321        // a 64-bit JVM with an 8-byte aligned field offset.
322        if (!("64".equals(System.getProperty("sun.arch.data.model"))
323            && (BYTE_ARRAY_BASE_OFFSET % 8) == 0
324            // sanity check - this should never fail
325            && theUnsafe.arrayIndexScale(byte[].class) == 1)) {
326          throw new Error(); // force fallback to PureJavaComparator
327        }
328      }
329
330      /**
331       * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. Replace with a simple
332       * call to Unsafe.getUnsafe when integrating into a jdk.
333       *
334       * @return a sun.misc.Unsafe
335       */
336      private static sun.misc.Unsafe getUnsafe() {
337        try {
338          return sun.misc.Unsafe.getUnsafe();
339        } catch (SecurityException e) {
340          // that's okay; try reflection instead
341        }
342        try {
343          return java.security.AccessController.doPrivileged(
344              new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
345                @Override
346                public sun.misc.Unsafe run() throws Exception {
347                  Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
348                  for (java.lang.reflect.Field f : k.getDeclaredFields()) {
349                    f.setAccessible(true);
350                    Object x = f.get(null);
351                    if (k.isInstance(x)) {
352                      return k.cast(x);
353                    }
354                  }
355                  throw new NoSuchFieldError("the Unsafe");
356                }
357              });
358        } catch (java.security.PrivilegedActionException e) {
359          throw new RuntimeException("Could not initialize intrinsics", e.getCause());
360        }
361      }
362
363      @Override
364      public int compare(byte[] left, byte[] right) {
365        int stride = 8;
366        int minLength = Math.min(left.length, right.length);
367        int strideLimit = minLength & ~(stride - 1);
368        int i;
369
370        /*
371         * Compare 8 bytes at a time. Benchmarking on x86 shows a stride of 8 bytes is no slower
372         * than 4 bytes even on 32-bit. On the other hand, it is substantially faster on 64-bit.
373         */
374        for (i = 0; i < strideLimit; i += stride) {
375          long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
376          long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
377          if (lw != rw) {
378            if (BIG_ENDIAN) {
379              return UnsignedLongs.compare(lw, rw);
380            }
381
382            /*
383             * We want to compare only the first index where left[index] != right[index]. This
384             * corresponds to the least significant nonzero byte in lw ^ rw, since lw and rw are
385             * little-endian. Long.numberOfTrailingZeros(diff) tells us the least significant
386             * nonzero bit, and zeroing out the first three bits of L.nTZ gives us the shift to get
387             * that least significant nonzero byte.
388             */
389            int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7;
390            return ((int) ((lw >>> n) & UNSIGNED_MASK)) - ((int) ((rw >>> n) & UNSIGNED_MASK));
391          }
392        }
393
394        // The epilogue to cover the last (minLength % stride) elements.
395        for (; i < minLength; i++) {
396          int result = UnsignedBytes.compare(left[i], right[i]);
397          if (result != 0) {
398            return result;
399          }
400        }
401        return left.length - right.length;
402      }
403
404      @Override
405      public String toString() {
406        return "UnsignedBytes.lexicographicalComparator() (sun.misc.Unsafe version)";
407      }
408    }
409
410    enum PureJavaComparator implements Comparator<byte[]> {
411      INSTANCE;
412
413      @Override
414      public int compare(byte[] left, byte[] right) {
415        int minLength = Math.min(left.length, right.length);
416        for (int i = 0; i < minLength; i++) {
417          int result = UnsignedBytes.compare(left[i], right[i]);
418          if (result != 0) {
419            return result;
420          }
421        }
422        return left.length - right.length;
423      }
424
425      @Override
426      public String toString() {
427        return "UnsignedBytes.lexicographicalComparator() (pure Java version)";
428      }
429    }
430
431    /**
432     * Returns the Unsafe-using Comparator, or falls back to the pure-Java implementation if unable
433     * to do so.
434     */
435    static Comparator<byte[]> getBestComparator() {
436      try {
437        Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
438
439        // requireNonNull is safe because the class is an enum.
440        Object[] constants = requireNonNull(theClass.getEnumConstants());
441
442        // yes, UnsafeComparator does implement Comparator<byte[]>
443        @SuppressWarnings("unchecked")
444        Comparator<byte[]> comparator = (Comparator<byte[]>) constants[0];
445        return comparator;
446      } catch (Throwable t) { // ensure we really catch *everything*
447        return lexicographicalComparatorJavaImpl();
448      }
449    }
450  }
451
452  private static byte flip(byte b) {
453    return (byte) (b ^ 0x80);
454  }
455
456  /**
457   * Sorts the array, treating its elements as unsigned bytes.
458   *
459   * @since 23.1
460   */
461  public static void sort(byte[] array) {
462    checkNotNull(array);
463    sort(array, 0, array.length);
464  }
465
466  /**
467   * Sorts the array between {@code fromIndex} inclusive and {@code toIndex} exclusive, treating its
468   * elements as unsigned bytes.
469   *
470   * @since 23.1
471   */
472  public static void sort(byte[] array, int fromIndex, int toIndex) {
473    checkNotNull(array);
474    checkPositionIndexes(fromIndex, toIndex, array.length);
475    for (int i = fromIndex; i < toIndex; i++) {
476      array[i] = flip(array[i]);
477    }
478    Arrays.sort(array, fromIndex, toIndex);
479    for (int i = fromIndex; i < toIndex; i++) {
480      array[i] = flip(array[i]);
481    }
482  }
483
484  /**
485   * Sorts the elements of {@code array} in descending order, interpreting them as unsigned 8-bit
486   * integers.
487   *
488   * @since 23.1
489   */
490  public static void sortDescending(byte[] array) {
491    checkNotNull(array);
492    sortDescending(array, 0, array.length);
493  }
494
495  /**
496   * Sorts the elements of {@code array} between {@code fromIndex} inclusive and {@code toIndex}
497   * exclusive in descending order, interpreting them as unsigned 8-bit integers.
498   *
499   * @since 23.1
500   */
501  public static void sortDescending(byte[] array, int fromIndex, int toIndex) {
502    checkNotNull(array);
503    checkPositionIndexes(fromIndex, toIndex, array.length);
504    for (int i = fromIndex; i < toIndex; i++) {
505      array[i] ^= Byte.MAX_VALUE;
506    }
507    Arrays.sort(array, fromIndex, toIndex);
508    for (int i = fromIndex; i < toIndex; i++) {
509      array[i] ^= Byte.MAX_VALUE;
510    }
511  }
512}