com.intel.analytics.bigdl.nn

Linear

class Linear[T] extends TensorModule[T]

The Linear module applies a linear transformation to the input data, i.e. y = Wx + b. The input given in forward(input) must be either a vector (1D tensor) or matrix (2D tensor). If the input is a vector, it must have the size of inputSize. If it is a matrix, then each row is assumed to be an input sample of given batch (the number of rows means the batch size and the number of columns should be equal to the inputSize).

Annotations
@SerialVersionUID( 359656776803598943L )
Linear Supertypes
TensorModule[T], AbstractModule[Tensor[T], Tensor[T], T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Linear
  2. TensorModule
  3. AbstractModule
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Linear(inputSize: Int, outputSize: Int, initMethod: InitializationMethod = Default, withBias: Boolean = true)(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    inputSize

    the size the each input sample

    outputSize

    the size of the module output of each sample

    initMethod

    two initialized methods are supported here, which are Default and Xavier, where Xavier set bias to zero here. For more detailed information about initMethod, please refer to InitializationMethod

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def accGradParameters(input: Tensor[T], gradOutput: Tensor[T], scale: Double = 1.0): Unit

    Computing the gradient of the module with respect to its own parameters.

    Computing the gradient of the module with respect to its own parameters. Many modules do not perform this step as they do not have any parameters. The state variable name for the parameters is module dependent. The module is expected to accumulate the gradients with respect to the parameters in some variable.

    input
    gradOutput
    scale

    Definition Classes
    LinearAbstractModule
  7. val addBuffer: Tensor[T]

  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def backward(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Performs a back-propagation step through the module, with respect to the given input.

    Performs a back-propagation step through the module, with respect to the given input. In general this method makes the assumption forward(input) has been called before, with the same input. This is necessary for optimization reasons. If you do not respect this rule, backward() will compute incorrect gradients.

    input

    input data

    gradOutput

    gradient of next layer

    returns

    gradient corresponding to input data

    Definition Classes
    AbstractModule
  10. var backwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  11. val bias: Tensor[T]

  12. def canEqual(other: Any): Boolean

    Definition Classes
    AbstractModule
  13. def checkEngineType(): Linear.this.type

    get execution engine type

    get execution engine type

    Definition Classes
    AbstractModule
  14. def clearState(): Linear.this.type

    Clear cached activities to save storage space or network bandwidth.

    Clear cached activities to save storage space or network bandwidth. Note that we use Tensor.set to keep some information like tensor share

    The subclass should override this method if it allocate some extra resource, and call the super.clearState in the override method

    returns

    Definition Classes
    LinearAbstractModule
  15. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  16. def cloneModule(): AbstractModule[Tensor[T], Tensor[T], T]

    Definition Classes
    AbstractModule
  17. def copyStatus(src: Module[T]): Linear.this.type

    Copy the useful running status from src to this.

    Copy the useful running status from src to this.

    The subclass should override this method if it has some parameters besides weight and bias. Such as runningMean and runningVar of BatchNormalization.

    src

    source Module

    returns

    this

    Definition Classes
    AbstractModule
  18. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. def equals(obj: Any): Boolean

    Definition Classes
    LinearAbstractModule → AnyRef → Any
  20. def evaluate(): Linear.this.type

    Definition Classes
    AbstractModule
  21. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def forward(input: Tensor[T]): Tensor[T]

    Takes an input object, and computes the corresponding output of the module.

    Takes an input object, and computes the corresponding output of the module. After a forward, the output state variable should have been updated to the new value.

    input

    input data

    returns

    output data

    Definition Classes
    AbstractModule
  23. var forwardTime: Long

    Attributes
    protected
    Definition Classes
    AbstractModule
  24. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  25. def getName(): String

    Get the module name, default name is className@namePostfix

    Get the module name, default name is className@namePostfix

    returns

    Definition Classes
    AbstractModule
  26. def getNumericType(): TensorDataType

    returns

    Float or Double

    Definition Classes
    AbstractModule
  27. def getParameters(): (Tensor[T], Tensor[T])

    This method compact all parameters and gradients of the model into two tensors.

    This method compact all parameters and gradients of the model into two tensors. So it's easier to use optim method

    returns

    Definition Classes
    AbstractModule
  28. def getParametersTable(): Table

    This function returns a table contains ModuleName, the parameter names and parameter value in this module.

    This function returns a table contains ModuleName, the parameter names and parameter value in this module. The result table is a structure of Table(ModuleName -> Table(ParameterName -> ParameterValue)), and the type is Table[String, Table[String, Tensor[T]]].

    For example, get the weight of a module named conv1: table[Table]("conv1")[Tensor[T]]("weight").

    Custom modules should override this function if they have parameters.

    returns

    Table

    Definition Classes
    LinearAbstractModule
  29. def getTimes(): Array[(AbstractModule[_ <: Activity, _ <: Activity, T], Long, Long)]

    Definition Classes
    AbstractModule
  30. val gradBias: Tensor[T]

  31. var gradInput: Tensor[T]

    The cached gradient of activities.

    The cached gradient of activities. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  32. val gradWeight: Tensor[T]

  33. def hashCode(): Int

    Definition Classes
    LinearAbstractModule → AnyRef → Any
  34. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  35. final def isTraining(): Boolean

    Definition Classes
    AbstractModule
  36. var line: String

    Attributes
    protected
    Definition Classes
    AbstractModule
  37. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  38. final def notify(): Unit

    Definition Classes
    AnyRef
  39. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  40. var output: Tensor[T]

    The cached output.

    The cached output. So we don't compute it again when need it

    Definition Classes
    AbstractModule
  41. def parameters(): (Array[Tensor[T]], Array[Tensor[T]])

    This function returns two arrays.

    This function returns two arrays. One for the weights and the other the gradients Custom modules should override this function if they have parameters

    returns

    (Array of weights, Array of grad)

    Definition Classes
    LinearAbstractModule
  42. def predict(dataset: RDD[Sample[T]]): RDD[Activity]

    module predict, return the probability distribution

    module predict, return the probability distribution

    dataset

    dataset for prediction

    Definition Classes
    AbstractModule
  43. def predictClass(dataset: RDD[Sample[T]]): RDD[Int]

    module predict, return the predict label

    module predict, return the predict label

    dataset

    dataset for prediction

    Definition Classes
    AbstractModule
  44. def reset(): Unit

    Definition Classes
    LinearAbstractModule
  45. def resetTimes(): Unit

    Definition Classes
    AbstractModule
  46. def save(path: String, overWrite: Boolean = false): Linear.this.type

    Definition Classes
    AbstractModule
  47. def saveTorch(path: String, overWrite: Boolean = false): Linear.this.type

    Definition Classes
    AbstractModule
  48. def setInitMethod(initMethod: InitializationMethod): Linear.this.type

  49. def setLine(line: String): Linear.this.type

    Definition Classes
    AbstractModule
  50. def setName(name: String): Linear.this.type

    Set the module name

    Set the module name

    name
    returns

    Definition Classes
    AbstractModule
  51. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  52. def toString(): String

    Definition Classes
    Linear → AnyRef → Any
  53. var train: Boolean

    Module status.

    Module status. It is useful for modules like dropout/batch normalization

    Attributes
    protected
    Definition Classes
    AbstractModule
  54. def training(): Linear.this.type

    Definition Classes
    AbstractModule
  55. def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T]

    Computing the gradient of the module with respect to its own input.

    Computing the gradient of the module with respect to its own input. This is returned in gradInput. Also, the gradInput state variable is updated accordingly.

    input
    gradOutput
    returns

    Definition Classes
    LinearAbstractModule
  56. def updateOutput(input: Tensor[T]): Tensor[T]

    Computes the output using the current parameter set of the class and input.

    Computes the output using the current parameter set of the class and input. This function returns the result which is stored in the output field.

    input
    returns

    Definition Classes
    LinearAbstractModule
  57. def updateParameters(learningRate: T): Unit

    Definition Classes
    LinearAbstractModule
  58. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  59. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  60. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  61. val weight: Tensor[T]

  62. def zeroGradParameters(): Unit

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters.

    If the module has parameters, this will zero the accumulation of the gradients with respect to these parameters. Otherwise, it does nothing.

    Definition Classes
    LinearAbstractModule

Inherited from TensorModule[T]

Inherited from AbstractModule[Tensor[T], Tensor[T], T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped