com.intel.analytics.zoo.pipeline.api

Net

object Net

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Net
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def load[T](path: String, weightPath: String = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): KerasNet[T]

    Load model from path.

    Load model from path.

    T

    numeric type

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    : where weight is stored

    returns

    An Analytics Zoo model.

  15. def loadBigDL[T](path: String, weightPath: String = null)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): GraphNet[T]

    Load BigDL model from path.

    Load BigDL model from path.

    T

    numeric type

    path

    path to save module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    weightPath

    : where weight is stored

    returns

    model loaded from path

  16. def loadCaffe[T](defPath: String, modelPath: String)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): GraphNet[T]

    Loaf caffe trained model from prototxt and weight files

    Loaf caffe trained model from prototxt and weight files

    defPath

    caffe model definition file path

    modelPath

    caffe model binary file containing weight and bias

  17. def loadTF[T](folder: String)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): GraphNet[T]

    Load TensorFlow model from exported folder.

    Load TensorFlow model from exported folder.

    folder

    The folder path which contains 'frozen_inference_graph.pb' and 'graph_meta.json'.

    returns

    model loaded from path

  18. def loadTF[T](graphFile: String, inputs: Seq[String], outputs: Seq[String], byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN, binFile: Option[String] = None)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): GraphNet[T]

    Load tensorflow model from its saved protobuf file.

    Load tensorflow model from its saved protobuf file.

    graphFile

    where is the protobuf model file

    inputs

    input node names

    outputs

    output node names, the output tensor order is same with the node order

    byteOrder

    byte order in the tensorflow file. The default value is little endian

    binFile

    where is the model variable file

    returns

    model loaded from path

  19. def loadTFCheckpoints[T](graphFile: String, binFile: String, byteOrder: ByteOrder = ByteOrder.LITTLE_ENDIAN)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): Session[T]

    Load tensorflow checkpoints

    Load tensorflow checkpoints

    T
    graphFile
    binFile
    returns

  20. def loadTorch[T](path: String)(implicit arg0: ClassTag[T], ev: TensorNumeric[T]): GraphNet[T]

    Load Torch model from path.

    Load Torch model from path.

    T

    numeric type

    path

    path to load module, local file system, HDFS and Amazon S3 is supported. HDFS path should be like "hdfs://[host]:[port]/xxx" Amazon S3 path should be like "s3a://bucket/xxx"

    returns

    model loaded from path

  21. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. def setInitMethod(module: AbstractModule[_, _, _], weightInitMethod: InitializationMethod = null, biasInitMethod: InitializationMethod = null, throwException: Boolean = true): Unit

  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  26. def toString(): String

    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped