Class/Object

com.intel.analytics.zoo.feature.python

PythonFeatureSet

Related Docs: object PythonFeatureSet | package python

Permalink

class PythonFeatureSet[T] extends PythonZoo[T]

Linear Supertypes
PythonZoo[T], PythonBigDLKeras[T], PythonBigDL[T], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PythonFeatureSet
  2. PythonZoo
  3. PythonBigDLKeras
  4. PythonBigDL
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonFeatureSet()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  5. def activityToList(outputActivity: Activity): List[AnyRef]

    Permalink
    Definition Classes
    PythonZoo
  6. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Permalink
    Definition Classes
    PythonBigDL
  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. def batching(dataset: DataSet[Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def compile(module: KerasModel[T], optimizer: OptimMethod[T], loss: Criterion[T], metrics: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  11. def createAbs(): Abs[T]

    Permalink
    Definition Classes
    PythonBigDL
  12. def createAbsCriterion(sizeAverage: Boolean): AbsCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  13. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Permalink
    Definition Classes
    PythonBigDL
  14. def createAdadelta(decayRate: Double, Epsilon: Double): Adadelta[T]

    Permalink
    Definition Classes
    PythonBigDL
  15. def createAdagrad(learningRate: Double, learningRateDecay: Double, weightDecay: Double): Adagrad[T]

    Permalink
    Definition Classes
    PythonBigDL
  16. def createAdam(learningRate: Double, learningRateDecay: Double, beta1: Double, beta2: Double, Epsilon: Double): Adam[T]

    Permalink
    Definition Classes
    PythonBigDL
  17. def createAdamax(learningRate: Double, beta1: Double, beta2: Double, Epsilon: Double): Adamax[T]

    Permalink
    Definition Classes
    PythonBigDL
  18. def createAdd(inputSize: Int): Add[T]

    Permalink
    Definition Classes
    PythonBigDL
  19. def createAddConstant(constant_scalar: Double, inplace: Boolean): AddConstant[T]

    Permalink
    Definition Classes
    PythonBigDL
  20. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int, useScaleFactor: Boolean, minScale: Double): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  21. def createBCECriterion(weights: JTensor, sizeAverage: Boolean): BCECriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  22. def createBatchNormalization(nOutput: Int, eps: Double, momentum: Double, affine: Boolean, initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor): BatchNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  23. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T]): BiRecurrent[T]

    Permalink
    Definition Classes
    PythonBigDL
  24. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  25. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): Bilinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  26. def createBilinearFiller(): BilinearFiller.type

    Permalink
    Definition Classes
    PythonBigDL
  27. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Permalink
    Definition Classes
    PythonBigDL
  28. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean, withGraph: Boolean): BinaryTreeLSTM[T]

    Permalink
    Definition Classes
    PythonBigDL
  29. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int, nOutputDim1: Int): Bottle[T]

    Permalink
    Definition Classes
    PythonBigDL
  30. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Permalink
    Definition Classes
    PythonBigDL
  31. def createBytesToMat(byteKey: String): BytesToMat

    Permalink
    Definition Classes
    PythonBigDL
  32. def createCAdd(size: List[Int], bRegularizer: Regularizer[T]): CAdd[T]

    Permalink
    Definition Classes
    PythonBigDL
  33. def createCAddTable(inplace: Boolean): CAddTable[T, T]

    Permalink
    Definition Classes
    PythonBigDL
  34. def createCAveTable(inplace: Boolean): CAveTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  35. def createCDivTable(): CDivTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  36. def createCMaxTable(): CMaxTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  37. def createCMinTable(): CMinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  38. def createCMul(size: List[Int], wRegularizer: Regularizer[T]): CMul[T]

    Permalink
    Definition Classes
    PythonBigDL
  39. def createCMulTable(): CMulTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  40. def createCSubTable(): CSubTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  41. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Permalink
    Definition Classes
    PythonBigDL
  42. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Permalink
    Definition Classes
    PythonBigDL
  43. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double, stdG: Double, stdB: Double): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  44. def createChannelOrder(): ChannelOrder

    Permalink
    Definition Classes
    PythonBigDL
  45. def createChannelScaledNormalizer(meanR: Int, meanG: Int, meanB: Int, scale: Double): ChannelScaledNormalizer

    Permalink
    Definition Classes
    PythonBigDL
  46. def createClamp(min: Int, max: Int): Clamp[T]

    Permalink
    Definition Classes
    PythonBigDL
  47. def createClassNLLCriterion(weights: JTensor, sizeAverage: Boolean, logProbAsInput: Boolean): ClassNLLCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  48. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  49. def createColorJitter(brightnessProb: Double, brightnessDelta: Double, contrastProb: Double, contrastLower: Double, contrastUpper: Double, hueProb: Double, hueDelta: Double, saturationProb: Double, saturationLower: Double, saturationUpper: Double, randomOrderProb: Double, shuffle: Boolean): ColorJitter

    Permalink
    Definition Classes
    PythonBigDL
  50. def createConcat(dimension: Int): Concat[T]

    Permalink
    Definition Classes
    PythonBigDL
  51. def createConcatTable(): ConcatTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  52. def createConstInitMethod(value: Double): ConstInitMethod

    Permalink
    Definition Classes
    PythonBigDL
  53. def createContiguous(): Contiguous[T]

    Permalink
    Definition Classes
    PythonBigDL
  54. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Permalink
    Definition Classes
    PythonBigDL
  55. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int, padding: Int, activation: TensorModule[T], innerActivation: TensorModule[T], wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], cRegularizer: Regularizer[T], withPeephole: Boolean): ConvLSTMPeephole[T]

    Permalink
    Definition Classes
    PythonBigDL
  56. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int, padding: Int, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], cRegularizer: Regularizer[T], withPeephole: Boolean): ConvLSTMPeephole3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  57. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Permalink
    Definition Classes
    PythonBigDL
  58. def createCosineDistance(): CosineDistance[T]

    Permalink
    Definition Classes
    PythonBigDL
  59. def createCosineDistanceCriterion(sizeAverage: Boolean): CosineDistanceCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  60. def createCosineEmbeddingCriterion(margin: Double, sizeAverage: Boolean): CosineEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  61. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  62. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String): Cropping2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  63. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String): Cropping3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  64. def createCrossEntropyCriterion(weights: JTensor, sizeAverage: Boolean): CrossEntropyCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  65. def createCrossProduct(numTensor: Int, embeddingSize: Int): CrossProduct[T]

    Permalink
    Definition Classes
    PythonBigDL
  66. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Permalink
    Definition Classes
    PythonBigDL
  67. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  68. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Permalink
    Definition Classes
    PythonBigDL
  69. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

    Permalink
    Definition Classes
    PythonBigDL
  70. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  71. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Permalink
    Definition Classes
    PythonBigDL
  72. def createDefault(): Default

    Permalink
    Definition Classes
    PythonBigDL
  73. def createDenseToSparse(): DenseToSparse[T]

    Permalink
    Definition Classes
    PythonBigDL
  74. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Permalink
    Definition Classes
    PythonBigDL
  75. def createDetectionOutputFrcnn(nmsThresh: Float, nClasses: Int, bboxVote: Boolean, maxPerImage: Int, thresh: Double): DetectionOutputFrcnn

    Permalink
    Definition Classes
    PythonBigDL
  76. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Permalink
    Definition Classes
    PythonBigDL
  77. def createDiceCoefficientCriterion(sizeAverage: Boolean, epsilon: Float): DiceCoefficientCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  78. def createDistKLDivCriterion(sizeAverage: Boolean): DistKLDivCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  79. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  80. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  81. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  82. def createDotProduct(): DotProduct[T]

    Permalink
    Definition Classes
    PythonBigDL
  83. def createDotProductCriterion(sizeAverage: Boolean): DotProductCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  84. def createDropout(initP: Double, inplace: Boolean, scale: Boolean): Dropout[T]

    Permalink
    Definition Classes
    PythonBigDL
  85. def createELU(alpha: Double, inplace: Boolean): ELU[T]

    Permalink
    Definition Classes
    PythonBigDL
  86. def createEcho(): Echo[T]

    Permalink
    Definition Classes
    PythonBigDL
  87. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean): Euclidean[T]

    Permalink
    Definition Classes
    PythonBigDL
  88. def createEveryEpoch(): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  89. def createExp(): Exp[T]

    Permalink
    Definition Classes
    PythonBigDL
  90. def createExpand(meansR: Int, meansG: Int, meansB: Int, minExpandRatio: Double, maxExpandRatio: Double): Expand

    Permalink
    Definition Classes
    PythonBigDL
  91. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean): Exponential

    Permalink
    Definition Classes
    PythonBigDL
  92. def createFeatureSetFromImageFrame(imageFrame: ImageFrame, memoryType: String): FeatureSet[ImageFeature]

    Permalink
  93. def createFeatureSetFromRDD(data: JavaRDD[Any], memoryType: String): FeatureSet[Any]

    Permalink
  94. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int): Filler

    Permalink
    Definition Classes
    PythonBigDL
  95. def createFixExpand(eh: Int, ew: Int): FixExpand

    Permalink
    Definition Classes
    PythonBigDL
  96. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Permalink
    Definition Classes
    PythonBigDL
  97. def createFlattenTable(): FlattenTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  98. def createFtrl(learningRate: Double, learningRatePower: Double, initialAccumulatorValue: Double, l1RegularizationStrength: Double, l2RegularizationStrength: Double, l2ShrinkageRegularizationStrength: Double): Ftrl[T]

    Permalink
    Definition Classes
    PythonBigDL
  99. def createGRU(inputSize: Int, outputSize: Int, p: Double, activation: TensorModule[T], innerActivation: TensorModule[T], wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): GRU[T]

    Permalink
    Definition Classes
    PythonBigDL
  100. def createGaussianCriterion(): GaussianCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  101. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Permalink
    Definition Classes
    PythonBigDL
  102. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Permalink
    Definition Classes
    PythonBigDL
  103. def createGaussianSampler(): GaussianSampler[T]

    Permalink
    Definition Classes
    PythonBigDL
  104. def createGradientReversal(lambda: Double): GradientReversal[T]

    Permalink
    Definition Classes
    PythonBigDL
  105. def createHFlip(): HFlip

    Permalink
    Definition Classes
    PythonBigDL
  106. def createHardShrink(lambda: Double): HardShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  107. def createHardSigmoid: HardSigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  108. def createHardTanh(minValue: Double, maxValue: Double, inplace: Boolean): HardTanh[T]

    Permalink
    Definition Classes
    PythonBigDL
  109. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T], wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  110. def createHingeEmbeddingCriterion(margin: Double, sizeAverage: Boolean): HingeEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  111. def createHitRatio(k: Int, negNum: Int): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  112. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Permalink
    Definition Classes
    PythonBigDL
  113. def createIdentity(): Identity[T]

    Permalink
    Definition Classes
    PythonBigDL
  114. def createImageFeature(data: JTensor, label: JTensor, uri: String): ImageFeature

    Permalink
    Definition Classes
    PythonBigDL
  115. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Permalink
    Definition Classes
    PythonBigDL
  116. def createIndex(dimension: Int): Index[T]

    Permalink
    Definition Classes
    PythonBigDL
  117. def createInferReshape(size: List[Int], batchMode: Boolean): InferReshape[T]

    Permalink
    Definition Classes
    PythonBigDL
  118. def createInput(): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  119. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  120. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  121. def createKerasActivation(activation: String, inputShape: List[Int]): Activation[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  122. def createKerasAtrousConvolution1D(nbFilter: Int, filterLength: Int, init: String, activation: String, subsampleLength: Int, atrousRate: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], inputShape: List[Int]): AtrousConvolution1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  123. def createKerasAtrousConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String, activation: String, subsample: List[Int], atrousRate: List[Int], dimOrdering: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], inputShape: List[Int]): AtrousConvolution2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  124. def createKerasAveragePooling1D(poolLength: Int, stride: Int, borderMode: String, inputShape: List[Int]): AveragePooling1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  125. def createKerasAveragePooling2D(poolSize: List[Int], strides: List[Int], borderMode: String, dimOrdering: String, inputShape: List[Int]): AveragePooling2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  126. def createKerasAveragePooling3D(poolSize: List[Int], strides: List[Int], dimOrdering: String, inputShape: List[Int]): AveragePooling3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  127. def createKerasBatchNormalization(epsilon: Double, momentum: Double, betaInit: String, gammaInit: String, dimOrdering: String, inputShape: List[Int]): BatchNormalization[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  128. def createKerasBidirectional(layer: Recurrent[T], mergeMode: String, inputShape: List[Int]): Bidirectional[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  129. def createKerasConvLSTM2D(nbFilter: Int, nbKernel: Int, activation: String, innerActivation: String, dimOrdering: String, subsample: Int, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], returnSequences: Boolean, goBackwards: Boolean, inputShape: List[Int]): ConvLSTM2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  130. def createKerasConvolution1D(nbFilter: Int, filterLength: Int, init: String, activation: String, borderMode: String, subsampleLength: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Convolution1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  131. def createKerasConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String, activation: String, borderMode: String, subsample: List[Int], dimOrdering: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Convolution2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  132. def createKerasConvolution3D(nbFilter: Int, kernelDim1: Int, kernelDim2: Int, kernelDim3: Int, init: String, activation: String, borderMode: String, subsample: List[Int], dimOrdering: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Convolution3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  133. def createKerasCropping1D(cropping: List[Int], inputShape: List[Int]): Cropping1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  134. def createKerasCropping2D(heightCrop: List[Int], widthCrop: List[Int], dimOrdering: String, inputShape: List[Int]): Cropping2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  135. def createKerasCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dimOrdering: String, inputShape: List[Int]): Cropping3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  136. def createKerasDeconvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String, activation: String, subsample: List[Int], dimOrdering: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Deconvolution2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  137. def createKerasDense(outputDim: Int, init: String, activation: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Dense[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  138. def createKerasDropout(p: Double, inputShape: List[Int]): Dropout[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  139. def createKerasELU(alpha: Double, inputShape: List[Int]): ELU[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  140. def createKerasEmbedding(inputDim: Int, outputDim: Int, init: String, wRegularizer: Regularizer[T], inputShape: List[Int]): Embedding[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  141. def createKerasFlatten(inputShape: List[Int]): Flatten[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  142. def createKerasGRU(outputDim: Int, activation: String, innerActivation: String, returnSequences: Boolean, goBackwards: Boolean, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], inputShape: List[Int]): GRU[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  143. def createKerasGaussianDropout(p: Double, inputShape: List[Int]): GaussianDropout[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  144. def createKerasGaussianNoise(sigma: Double, inputShape: List[Int]): GaussianNoise[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  145. def createKerasGlobalAveragePooling1D(inputShape: List[Int]): GlobalAveragePooling1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  146. def createKerasGlobalAveragePooling2D(dimOrdering: String, inputShape: List[Int]): GlobalAveragePooling2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  147. def createKerasGlobalAveragePooling3D(dimOrdering: String, inputShape: List[Int]): GlobalAveragePooling3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  148. def createKerasGlobalMaxPooling1D(inputShape: List[Int]): GlobalMaxPooling1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  149. def createKerasGlobalMaxPooling2D(dimOrdering: String, inputShape: List[Int]): GlobalMaxPooling2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  150. def createKerasGlobalMaxPooling3D(dimOrdering: String, inputShape: List[Int]): GlobalMaxPooling3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  151. def createKerasHighway(activation: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): Highway[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  152. def createKerasInput(name: String, inputShape: List[Int]): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  153. def createKerasInputLayer(inputShape: List[Int]): KerasLayer[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  154. def createKerasLSTM(outputDim: Int, activation: String, innerActivation: String, returnSequences: Boolean, goBackwards: Boolean, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], inputShape: List[Int]): LSTM[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  155. def createKerasLeakyReLU(alpha: Double, inputShape: List[Int]): LeakyReLU[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  156. def createKerasLocallyConnected1D(nbFilter: Int, filterLength: Int, activation: String, subsampleLength: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): LocallyConnected1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  157. def createKerasLocallyConnected2D(nbFilter: Int, nbRow: Int, nbCol: Int, activation: String, borderMode: String, subsample: List[Int], dimOrdering: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): LocallyConnected2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  158. def createKerasMasking(maskValue: Double, inputShape: List[Int]): Masking[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  159. def createKerasMaxPooling1D(poolLength: Int, stride: Int, borderMode: String, inputShape: List[Int]): MaxPooling1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  160. def createKerasMaxPooling2D(poolSize: List[Int], strides: List[Int], borderMode: String, dimOrdering: String, inputShape: List[Int]): MaxPooling2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  161. def createKerasMaxPooling3D(poolSize: List[Int], strides: List[Int], dimOrdering: String, inputShape: List[Int]): MaxPooling3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  162. def createKerasMaxoutDense(outputDim: Int, nbFeature: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): MaxoutDense[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  163. def createKerasMerge(layers: List[AbstractModule[Activity, Activity, T]], mode: String, concatAxis: Int, inputShape: List[List[Int]]): Merge[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  164. def createKerasModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Model[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  165. def createKerasPermute(dims: List[Int], inputShape: List[Int]): Permute[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  166. def createKerasRepeatVector(n: Int, inputShape: List[Int]): RepeatVector[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  167. def createKerasReshape(targetShape: List[Int], inputShape: List[Int]): Reshape[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  168. def createKerasSReLU(tLeftInit: String, aLeftInit: String, tRightInit: String, aRightInit: String, sharedAxes: List[Int], inputShape: List[Int]): SReLU[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  169. def createKerasSeparableConvolution2D(nbFilter: Int, nbRow: Int, nbCol: Int, init: String, activation: String, borderMode: String, subsample: List[Int], depthMultiplier: Int, dimOrdering: String, depthwiseRegularizer: Regularizer[T], pointwiseRegularizer: Regularizer[T], bRegularizer: Regularizer[T], bias: Boolean, inputShape: List[Int]): SeparableConvolution2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  170. def createKerasSequential(): Sequential[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  171. def createKerasSimpleRNN(outputDim: Int, activation: String, returnSequences: Boolean, goBackwards: Boolean, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T], inputShape: List[Int]): SimpleRNN[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  172. def createKerasSpatialDropout1D(p: Double, inputShape: List[Int]): SpatialDropout1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  173. def createKerasSpatialDropout2D(p: Double, dimOrdering: String, inputShape: List[Int]): SpatialDropout2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  174. def createKerasSpatialDropout3D(p: Double, dimOrdering: String, inputShape: List[Int]): SpatialDropout3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  175. def createKerasThresholdedReLU(theta: Double, inputShape: List[Int]): ThresholdedReLU[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  176. def createKerasTimeDistributed(layer: KerasLayer[Tensor[T], Tensor[T], T], inputShape: List[Int]): TimeDistributed[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  177. def createKerasUpSampling1D(length: Int, inputShape: List[Int]): UpSampling1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  178. def createKerasUpSampling2D(size: List[Int], dimOrdering: String, inputShape: List[Int]): UpSampling2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  179. def createKerasUpSampling3D(size: List[Int], dimOrdering: String, inputShape: List[Int]): UpSampling3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  180. def createKerasZeroPadding1D(padding: List[Int], inputShape: List[Int]): ZeroPadding1D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  181. def createKerasZeroPadding2D(padding: List[Int], dimOrdering: String, inputShape: List[Int]): ZeroPadding2D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  182. def createKerasZeroPadding3D(padding: List[Int], dimOrdering: String, inputShape: List[Int]): ZeroPadding3D[T]

    Permalink
    Definition Classes
    PythonBigDLKeras
  183. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  184. def createL1Cost(): L1Cost[T]

    Permalink
    Definition Classes
    PythonBigDL
  185. def createL1HingeEmbeddingCriterion(margin: Double): L1HingeEmbeddingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  186. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  187. def createL1Penalty(l1weight: Int, sizeAverage: Boolean, provideOutput: Boolean): L1Penalty[T]

    Permalink
    Definition Classes
    PythonBigDL
  188. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  189. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Permalink
    Definition Classes
    PythonBigDL
  190. def createLBFGS(maxIter: Int, maxEval: Double, tolFun: Double, tolX: Double, nCorrection: Int, learningRate: Double, verbose: Boolean, lineSearch: LineSearch[T], lineSearchOptions: Map[Any, Any]): LBFGS[T]

    Permalink
    Definition Classes
    PythonBigDL
  191. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double, activation: TensorModule[T], innerActivation: TensorModule[T], wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): LSTM[T]

    Permalink
    Definition Classes
    PythonBigDL
  192. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): LSTMPeephole[T]

    Permalink
    Definition Classes
    PythonBigDL
  193. def createLeakyReLU(negval: Double, inplace: Boolean): LeakyReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  194. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor): Linear[T]

    Permalink
    Definition Classes
    PythonBigDL
  195. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  196. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Permalink
    Definition Classes
    PythonBigDL
  197. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int, propagateBack: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor): LocallyConnected1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  198. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int, strideH: Int, padW: Int, padH: Int, propagateBack: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor, withBias: Boolean, dataFormat: String): LocallyConnected2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  199. def createLog(): Log[T]

    Permalink
    Definition Classes
    PythonBigDL
  200. def createLogSigmoid(): LogSigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  201. def createLogSoftMax(): LogSoftMax[T]

    Permalink
    Definition Classes
    PythonBigDL
  202. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double, maxNorm: Double, normType: Double, shouldScaleGradByFreq: Boolean, wRegularizer: Regularizer[T]): LookupTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  203. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String, maxNorm: Double, wRegularizer: Regularizer[T]): LookupTableSparse[T]

    Permalink
    Definition Classes
    PythonBigDL
  204. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  205. def createMAE(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  206. def createMM(transA: Boolean, transB: Boolean): MM[T]

    Permalink
    Definition Classes
    PythonBigDL
  207. def createMSECriterion: MSECriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  208. def createMV(trans: Boolean): MV[T]

    Permalink
    Definition Classes
    PythonBigDL
  209. def createMapTable(module: AbstractModule[Activity, Activity, T]): MapTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  210. def createMarginCriterion(margin: Double, sizeAverage: Boolean, squared: Boolean): MarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  211. def createMarginRankingCriterion(margin: Double, sizeAverage: Boolean): MarginRankingCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  212. def createMaskedSelect(): MaskedSelect[T]

    Permalink
    Definition Classes
    PythonBigDL
  213. def createMasking(maskValue: Double): Masking[T]

    Permalink
    Definition Classes
    PythonBigDL
  214. def createMatToFloats(validHeight: Int, validWidth: Int, validChannels: Int, outKey: String, shareBuffer: Boolean): MatToFloats

    Permalink
    Definition Classes
    PythonBigDL
  215. def createMatToTensor(toRGB: Boolean, tensorKey: String): MatToTensor[T]

    Permalink
    Definition Classes
    PythonBigDL
  216. def createMax(dim: Int, numInputDims: Int): Max[T]

    Permalink
    Definition Classes
    PythonBigDL
  217. def createMaxEpoch(max: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  218. def createMaxIteration(max: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  219. def createMaxScore(max: Float): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  220. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: Tensor[T], initBias: Tensor[T]): Maxout[T]

    Permalink
    Definition Classes
    PythonBigDL
  221. def createMean(dimension: Int, nInputDims: Int, squeeze: Boolean): Mean[T]

    Permalink
    Definition Classes
    PythonBigDL
  222. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  223. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  224. def createMin(dim: Int, numInputDims: Int): Min[T]

    Permalink
    Definition Classes
    PythonBigDL
  225. def createMinLoss(min: Float): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  226. def createMixtureTable(dim: Int): MixtureTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  227. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  228. def createModelPreprocessor(preprocessor: AbstractModule[Activity, Activity, T], trainable: AbstractModule[Activity, Activity, T]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  229. def createMsraFiller(varianceNormAverage: Boolean): MsraFiller

    Permalink
    Definition Classes
    PythonBigDL
  230. def createMul(): Mul[T]

    Permalink
    Definition Classes
    PythonBigDL
  231. def createMulConstant(scalar: Double, inplace: Boolean): MulConstant[T]

    Permalink
    Definition Classes
    PythonBigDL
  232. def createMultiCriterion(): MultiCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  233. def createMultiLabelMarginCriterion(sizeAverage: Boolean): MultiLabelMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  234. def createMultiLabelSoftMarginCriterion(weights: JTensor, sizeAverage: Boolean): MultiLabelSoftMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  235. def createMultiMarginCriterion(p: Int, weights: JTensor, margin: Double, sizeAverage: Boolean): MultiMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  236. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Permalink
    Definition Classes
    PythonBigDL
  237. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Permalink
    Definition Classes
    PythonBigDL
  238. def createNDCG(k: Int, negNum: Int): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  239. def createNarrow(dimension: Int, offset: Int, length: Int): Narrow[T]

    Permalink
    Definition Classes
    PythonBigDL
  240. def createNarrowTable(offset: Int, length: Int): NarrowTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  241. def createNegative(inplace: Boolean): Negative[T]

    Permalink
    Definition Classes
    PythonBigDL
  242. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Permalink
    Definition Classes
    PythonBigDL
  243. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  244. def createNormalize(p: Double, eps: Double): Normalize[T]

    Permalink
    Definition Classes
    PythonBigDL
  245. def createNormalizeScale(p: Double, eps: Double, scale: Double, size: List[Int], wRegularizer: Regularizer[T]): NormalizeScale[T]

    Permalink
    Definition Classes
    PythonBigDL
  246. def createOnes(): Ones.type

    Permalink
    Definition Classes
    PythonBigDL
  247. def createPGCriterion(sizeAverage: Boolean): PGCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  248. def createPReLU(nOutputPlane: Int): PReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  249. def createPack(dimension: Int): Pack[T]

    Permalink
    Definition Classes
    PythonBigDL
  250. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double, nIndex: Int): Padding[T]

    Permalink
    Definition Classes
    PythonBigDL
  251. def createPairwiseDistance(norm: Int): PairwiseDistance[T]

    Permalink
    Definition Classes
    PythonBigDL
  252. def createParallelAdam(learningRate: Double, learningRateDecay: Double, beta1: Double, beta2: Double, Epsilon: Double, parallelNum: Int): ParallelAdam[T]

    Permalink
    Definition Classes
    PythonBigDL
  253. def createParallelCriterion(repeatTarget: Boolean): ParallelCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  254. def createParallelTable(): ParallelTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  255. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  256. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Permalink
    Definition Classes
    PythonBigDL
  257. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Permalink
    Definition Classes
    PythonBigDL
  258. def createPlateau(monitor: String, factor: Float, patience: Int, mode: String, epsilon: Float, cooldown: Int, minLr: Float): Plateau

    Permalink
    Definition Classes
    PythonBigDL
  259. def createPoissonCriterion: PoissonCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  260. def createPoly(power: Double, maxIteration: Int): Poly

    Permalink
    Definition Classes
    PythonBigDL
  261. def createPower(power: Double, scale: Double, shift: Double): Power[T]

    Permalink
    Definition Classes
    PythonBigDL
  262. def createPriorBox(minSizes: List[Double], maxSizes: List[Double], aspectRatios: List[Double], isFlip: Boolean, isClip: Boolean, variances: List[Double], offset: Float, imgH: Int, imgW: Int, imgSize: Int, stepH: Float, stepW: Float, step: Float): PriorBox[T]

    Permalink
    Definition Classes
    PythonBigDL
  263. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int, rpnPostNmsTopNTrain: Int): Proposal

    Permalink
    Definition Classes
    PythonBigDL
  264. def createRMSprop(learningRate: Double, learningRateDecay: Double, decayRate: Double, Epsilon: Double): RMSprop[T]

    Permalink
    Definition Classes
    PythonBigDL
  265. def createRReLU(lower: Double, upper: Double, inplace: Boolean): RReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  266. def createRandomAlterAspect(min_area_ratio: Float, max_area_ratio: Int, min_aspect_ratio_change: Float, interp_mode: String, cropLength: Int): RandomAlterAspect

    Permalink
    Definition Classes
    PythonBigDL
  267. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int, maxSize: Int): RandomAspectScale

    Permalink
    Definition Classes
    PythonBigDL
  268. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Permalink
    Definition Classes
    PythonBigDL
  269. def createRandomCropper(cropWidth: Int, cropHeight: Int, mirror: Boolean, cropperMethod: String, channels: Int): RandomCropper

    Permalink
    Definition Classes
    PythonBigDL
  270. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Permalink
    Definition Classes
    PythonBigDL
  271. def createRandomResize(minSize: Int, maxSize: Int): RandomResize

    Permalink
    Definition Classes
    PythonBigDL
  272. def createRandomSampler(): FeatureTransformer

    Permalink
    Definition Classes
    PythonBigDL
  273. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Permalink
    Definition Classes
    PythonBigDL
  274. def createRandomUniform(): InitializationMethod

    Permalink
    Definition Classes
    PythonBigDL
  275. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Permalink
    Definition Classes
    PythonBigDL
  276. def createReLU(ip: Boolean): ReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  277. def createReLU6(inplace: Boolean): ReLU6[T]

    Permalink
    Definition Classes
    PythonBigDL
  278. def createRecurrent(): Recurrent[T]

    Permalink
    Definition Classes
    PythonBigDL
  279. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Permalink
    Definition Classes
    PythonBigDL
  280. def createReplicate(nFeatures: Int, dim: Int, nDim: Int): Replicate[T]

    Permalink
    Definition Classes
    PythonBigDL
  281. def createReshape(size: List[Int], batchMode: Boolean): Reshape[T]

    Permalink
    Definition Classes
    PythonBigDL
  282. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int, useScaleFactor: Boolean): Resize

    Permalink
    Definition Classes
    PythonBigDL
  283. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  284. def createReverse(dimension: Int, isInplace: Boolean): Reverse[T]

    Permalink
    Definition Classes
    PythonBigDL
  285. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean, isHiddenWithBias: Boolean, wRegularizer: Regularizer[T], uRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): RnnCell[T]

    Permalink
    Definition Classes
    PythonBigDL
  286. def createRoiHFlip(normalized: Boolean): RoiHFlip

    Permalink
    Definition Classes
    PythonBigDL
  287. def createRoiNormalize(): RoiNormalize

    Permalink
    Definition Classes
    PythonBigDL
  288. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  289. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Permalink
    Definition Classes
    PythonBigDL
  290. def createRoiResize(normalized: Boolean): RoiResize

    Permalink
    Definition Classes
    PythonBigDL
  291. def createSGD(learningRate: Double, learningRateDecay: Double, weightDecay: Double, momentum: Double, dampening: Double, nesterov: Boolean, leaningRateSchedule: LearningRateSchedule, learningRates: JTensor, weightDecays: JTensor): SGD[T]

    Permalink
    Definition Classes
    PythonBigDL
  292. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int]): SReLU[T]

    Permalink
    Definition Classes
    PythonBigDL
  293. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Permalink
    Definition Classes
    PythonBigDL
  294. def createScale(size: List[Int]): Scale[T]

    Permalink
    Definition Classes
    PythonBigDL
  295. def createSelect(dimension: Int, index: Int): Select[T]

    Permalink
    Definition Classes
    PythonBigDL
  296. def createSelectTable(dimension: Int): SelectTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  297. def createSequential(): Container[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  298. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Permalink
    Definition Classes
    PythonBigDL
  299. def createSeveralIteration(interval: Int): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  300. def createSigmoid(): Sigmoid[T]

    Permalink
    Definition Classes
    PythonBigDL
  301. def createSmoothL1Criterion(sizeAverage: Boolean): SmoothL1Criterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  302. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int): SmoothL1CriterionWithWeights[T]

    Permalink
    Definition Classes
    PythonBigDL
  303. def createSoftMarginCriterion(sizeAverage: Boolean): SoftMarginCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  304. def createSoftMax(): SoftMax[T]

    Permalink
    Definition Classes
    PythonBigDL
  305. def createSoftMin(): SoftMin[T]

    Permalink
    Definition Classes
    PythonBigDL
  306. def createSoftPlus(beta: Double): SoftPlus[T]

    Permalink
    Definition Classes
    PythonBigDL
  307. def createSoftShrink(lambda: Double): SoftShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  308. def createSoftSign(): SoftSign[T]

    Permalink
    Definition Classes
    PythonBigDL
  309. def createSoftmaxWithCriterion(ignoreLabel: Integer, normalizeMode: String): SoftmaxWithCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  310. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  311. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int, backwardLength: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor): SparseLinear[T]

    Permalink
    Definition Classes
    PythonBigDL
  312. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, globalPooling: Boolean, ceilMode: Boolean, countIncludePad: Boolean, divide: Boolean, format: String): SpatialAveragePooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  313. def createSpatialBatchNormalization(nOutput: Int, eps: Double, momentum: Double, affine: Boolean, initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor, dataFormat: String): SpatialBatchNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  314. def createSpatialContrastiveNormalization(nInputPlane: Int, kernel: JTensor, threshold: Double, thresval: Double): SpatialContrastiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  315. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int, strideH: Int, padW: Int, padH: Int, nGroup: Int, propagateBack: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor, withBias: Boolean, dataFormat: String): SpatialConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  316. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): SpatialConvolutionMap[T]

    Permalink
    Definition Classes
    PythonBigDL
  317. def createSpatialCrossMapLRN(size: Int, alpha: Double, beta: Double, k: Double, dataFormat: String): SpatialCrossMapLRN[T]

    Permalink
    Definition Classes
    PythonBigDL
  318. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, dilationW: Int, dilationH: Int, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): SpatialDilatedConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  319. def createSpatialDivisiveNormalization(nInputPlane: Int, kernel: JTensor, threshold: Double, thresval: Double): SpatialDivisiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  320. def createSpatialDropout1D(initP: Double): SpatialDropout1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  321. def createSpatialDropout2D(initP: Double, dataFormat: String): SpatialDropout2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  322. def createSpatialDropout3D(initP: Double, dataFormat: String): SpatialDropout3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  323. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, adjW: Int, adjH: Int, nGroup: Int, noBias: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): SpatialFullConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  324. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int, padH: Int, ceilMode: Boolean, format: String): SpatialMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  325. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int, sH: Int, pW: Int, pH: Int, withBias: Boolean, dataFormat: String, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], pRegularizer: Regularizer[T]): SpatialSeparableConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  326. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int, strideH: Int, padW: Int, padH: Int, nGroup: Int, propagateBack: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor, withBias: Boolean): SpatialShareConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  327. def createSpatialSubtractiveNormalization(nInputPlane: Int, kernel: JTensor): SpatialSubtractiveNormalization[T]

    Permalink
    Definition Classes
    PythonBigDL
  328. def createSpatialWithinChannelLRN(size: Int, alpha: Double, beta: Double): SpatialWithinChannelLRN[T]

    Permalink
    Definition Classes
    PythonBigDL
  329. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Permalink
    Definition Classes
    PythonBigDL
  330. def createSplitTable(dimension: Int, nInputDims: Int): SplitTable[T]

    Permalink
    Definition Classes
    PythonBigDL
  331. def createSqrt(): Sqrt[T]

    Permalink
    Definition Classes
    PythonBigDL
  332. def createSquare(): Square[T]

    Permalink
    Definition Classes
    PythonBigDL
  333. def createSqueeze(dim: Int, numInputDims: Int): Squeeze[T]

    Permalink
    Definition Classes
    PythonBigDL
  334. def createStep(stepSize: Int, gamma: Double): Step

    Permalink
    Definition Classes
    PythonBigDL
  335. def createSum(dimension: Int, nInputDims: Int, sizeAverage: Boolean, squeeze: Boolean): Sum[T]

    Permalink
    Definition Classes
    PythonBigDL
  336. def createTanh(): Tanh[T]

    Permalink
    Definition Classes
    PythonBigDL
  337. def createTanhShrink(): TanhShrink[T]

    Permalink
    Definition Classes
    PythonBigDL
  338. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int, propagateBack: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T], initWeight: JTensor, initBias: JTensor, initGradWeight: JTensor, initGradBias: JTensor): TemporalConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  339. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  340. def createThreshold(th: Double, v: Double, ip: Boolean): Threshold[T]

    Permalink
    Definition Classes
    PythonBigDL
  341. def createTile(dim: Int, copies: Int): Tile[T]

    Permalink
    Definition Classes
    PythonBigDL
  342. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Permalink
    Definition Classes
    PythonBigDL
  343. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean): TimeDistributedCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  344. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int): TimeDistributedMaskCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  345. def createTop1Accuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  346. def createTop5Accuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  347. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Permalink
    Definition Classes
    PythonBigDL
  348. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T], targetTransformer: AbstractModule[Activity, Activity, T]): TransformerCriterion[T]

    Permalink
    Definition Classes
    PythonBigDL
  349. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Permalink
    Definition Classes
    PythonBigDL
  350. def createTreeNNAccuracy(): ValidationMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  351. def createTriggerAnd(first: Trigger, others: List[Trigger]): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  352. def createTriggerOr(first: Trigger, others: List[Trigger]): Trigger

    Permalink
    Definition Classes
    PythonBigDL
  353. def createUnsqueeze(pos: Int, numInputDims: Int): Unsqueeze[T]

    Permalink
    Definition Classes
    PythonBigDL
  354. def createUpSampling1D(length: Int): UpSampling1D[T]

    Permalink
    Definition Classes
    PythonBigDL
  355. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Permalink
    Definition Classes
    PythonBigDL
  356. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Permalink
    Definition Classes
    PythonBigDL
  357. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Permalink
    Definition Classes
    PythonBigDL
  358. def createView(sizes: List[Int], num_input_dims: Int): View[T]

    Permalink
    Definition Classes
    PythonBigDL
  359. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int, countIncludePad: Boolean, ceilMode: Boolean): VolumetricAveragePooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  360. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int, withBias: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): VolumetricConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  361. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int, adjT: Int, adjW: Int, adjH: Int, nGroup: Int, noBias: Boolean, wRegularizer: Regularizer[T], bRegularizer: Regularizer[T]): VolumetricFullConvolution[T]

    Permalink
    Definition Classes
    PythonBigDL
  362. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int, padW: Int, padH: Int): VolumetricMaxPooling[T]

    Permalink
    Definition Classes
    PythonBigDL
  363. def createWarmup(delta: Double): Warmup

    Permalink
    Definition Classes
    PythonBigDL
  364. def createXavier(): Xavier.type

    Permalink
    Definition Classes
    PythonBigDL
  365. def createZeros(): Zeros.type

    Permalink
    Definition Classes
    PythonBigDL
  366. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  367. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Permalink
    Definition Classes
    PythonBigDL
  368. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  369. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Permalink
    Definition Classes
    PythonBigDL
  370. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String, toChw: Boolean): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  371. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  372. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  373. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Permalink
    Definition Classes
    PythonBigDL
  374. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Permalink
    Definition Classes
    PythonBigDL
  375. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Permalink
    Definition Classes
    PythonBigDL
  376. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

    Permalink
    Definition Classes
    PythonBigDL
  377. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Permalink
    Definition Classes
    PythonBigDL
  378. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

    Permalink
    Definition Classes
    PythonBigDL
  379. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  380. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  381. def evaluate(module: KerasModel[T], x: JavaRDD[Sample], batchSize: Int): List[EvaluatedResult]

    Permalink
    Definition Classes
    PythonBigDLKeras
  382. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  383. def featureSetToDataSet(featureSet: FeatureSet[Any]): DataSet[Any]

    Permalink
  384. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Permalink
    Definition Classes
    PythonBigDL
  385. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  386. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Permalink
    Definition Classes
    PythonBigDL
  387. def fit(module: KerasModel[T], xTrain: List[JTensor], yTrain: JTensor, batchSize: Int, epochs: Int, xVal: List[JTensor], yVal: JTensor, localCores: Int): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  388. def fit(module: KerasModel[T], x: DataSet[ImageFeature], batchSize: Int, epochs: Int, validationData: DataSet[ImageFeature]): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  389. def fit(module: KerasModel[T], x: JavaRDD[Sample], batchSize: Int, epochs: Int, validationData: JavaRDD[Sample]): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  390. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  391. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  392. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  393. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  394. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Permalink
    Definition Classes
    PythonBigDL
  395. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Permalink
    Definition Classes
    PythonBigDL
  396. def getHiddenState(rec: Recurrent[T]): JActivity

    Permalink
    Definition Classes
    PythonBigDL
  397. def getInputShape(module: Container[Activity, Activity, T]): List[List[Int]]

    Permalink
    Definition Classes
    PythonBigDLKeras
  398. def getNodeAndCoreNumber(): Array[Int]

    Permalink
    Definition Classes
    PythonBigDL
  399. def getOutputShape(module: Container[Activity, Activity, T]): List[List[Int]]

    Permalink
    Definition Classes
    PythonBigDLKeras
  400. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Permalink
    Definition Classes
    PythonBigDL
  401. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDLKeras
  402. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  403. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDLKeras
  404. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  405. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  406. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  407. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Permalink
    Definition Classes
    PythonBigDL
  408. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String, toChw: Boolean): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  409. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  410. def initEngine(): Unit

    Permalink
    Definition Classes
    PythonBigDL
  411. def isDistributed(imageFrame: ImageFrame): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  412. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  413. def isLocal(imageFrame: ImageFrame): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  414. def isWithWeights(module: Module[T]): Boolean

    Permalink
    Definition Classes
    PythonBigDL
  415. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Permalink
    Definition Classes
    PythonBigDL
  416. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  417. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  418. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  419. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  420. def loadOptimMethod(path: String): OptimMethod[T]

    Permalink
    Definition Classes
    PythonBigDL
  421. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String, generatedBackward: Boolean): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  422. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  423. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String, toChw: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  424. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  425. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  426. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Permalink
    Definition Classes
    PythonBigDL
  427. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Permalink
    Definition Classes
    PythonBigDL
  428. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  429. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
    Definition Classes
    PythonBigDL
  430. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
    Definition Classes
    PythonBigDL
  431. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  432. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Permalink
    Definition Classes
    PythonBigDL
  433. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Permalink
    Definition Classes
    PythonBigDL
  434. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  435. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int): JavaRDD[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  436. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  437. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  438. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  439. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  440. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int): List[JTensor]

    Permalink
    Definition Classes
    PythonBigDL
  441. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Permalink
    Definition Classes
    PythonBigDL
  442. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Permalink
    Definition Classes
    PythonBigDL
  443. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  444. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  445. def redirectSparkLogs(logPath: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  446. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  447. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean, overwrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  448. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  449. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  450. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  451. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Permalink
    Definition Classes
    PythonBigDL
  452. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  453. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Permalink
    Definition Classes
    PythonBigDL
  454. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  455. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Permalink
    Definition Classes
    PythonBigDL
  456. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  457. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Permalink
    Definition Classes
    PythonBigDL
  458. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Permalink
    Definition Classes
    PythonBigDL
  459. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  460. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  461. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
    Definition Classes
    PythonBigDL
  462. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Permalink
    Definition Classes
    PythonBigDL
  463. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Permalink
    Definition Classes
    PythonBigDL
  464. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Permalink
    Definition Classes
    PythonBigDL
  465. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Permalink
    Definition Classes
    PythonBigDL
  466. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Permalink
    Definition Classes
    PythonBigDL
  467. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Permalink
    Definition Classes
    PythonBigDL
  468. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Permalink
    Definition Classes
    PythonBigDL
  469. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Permalink
    Definition Classes
    PythonBigDL
  470. def setModelSeed(seed: Long): Unit

    Permalink
    Definition Classes
    PythonBigDL
  471. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  472. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDL
  473. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDLKeras
  474. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
    Definition Classes
    PythonBigDL
  475. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Permalink
    Definition Classes
    PythonBigDL
  476. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Permalink
    Definition Classes
    PythonBigDL
  477. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Permalink
    Definition Classes
    PythonBigDL
  478. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Permalink
    Definition Classes
    PythonBigDL
  479. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  480. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  481. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  482. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Permalink
    Definition Classes
    PythonBigDL
  483. def shapeToJList(shape: Shape): List[List[Int]]

    Permalink
    Definition Classes
    PythonBigDLKeras
  484. def showBigDlInfoLogs(): Unit

    Permalink
    Definition Classes
    PythonBigDL
  485. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Permalink
    Definition Classes
    PythonBigDL
  486. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Permalink
    Definition Classes
    PythonBigDL
  487. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  488. def testSample(sample: Sample): Sample

    Permalink
    Definition Classes
    PythonBigDL
  489. def testTensor(jTensor: JTensor): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  490. def toJSample(psamples: RDD[Sample]): RDD[Sample[T]]

    Permalink
    Definition Classes
    PythonBigDL
  491. def toJSample(record: Sample): Sample[T]

    Permalink
    Definition Classes
    PythonBigDL
  492. def toJTensor(tensor: Tensor[T]): JTensor

    Permalink
    Definition Classes
    PythonZoo → PythonBigDL
  493. def toPySample(sample: Sample[T]): Sample

    Permalink
    Definition Classes
    PythonBigDL
  494. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T]): Array[Sample[T]]

    Permalink
    Definition Classes
    PythonBigDL
  495. def toScalaArray(list: List[Int]): Array[Int]

    Permalink
    Definition Classes
    PythonBigDLKeras
  496. def toScalaMultiShape(inputShape: List[List[Int]]): Shape

    Permalink
    Definition Classes
    PythonBigDLKeras
  497. def toScalaShape(inputShape: List[Int]): Shape

    Permalink
    Definition Classes
    PythonBigDLKeras
  498. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  499. def toTensor(jTensor: JTensor): Tensor[T]

    Permalink
    Definition Classes
    PythonZoo → PythonBigDL
  500. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  501. def transformFeatureSet(featureSet: FeatureSet[Any], transformer: Transformer[Any, Any]): FeatureSet[Any]

    Permalink
  502. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Permalink
    Definition Classes
    PythonBigDL
  503. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Permalink
    Definition Classes
    PythonBigDL
  504. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
    Definition Classes
    PythonBigDL
  505. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Permalink
    Definition Classes
    PythonBigDL
  506. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Permalink
    Definition Classes
    PythonBigDL
  507. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  508. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  509. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  510. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int): Unit

    Permalink
    Definition Classes
    PythonBigDL
  511. def zooForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[AnyRef]

    Permalink
    Definition Classes
    PythonZoo
  512. def zooPredict(module: Predictable[T], x: TextSet, batchPerThread: Int): TextSet

    Permalink
    Definition Classes
    PythonZoo
  513. def zooPredict(module: Predictable[T], x: ImageSet, batchPerThread: Int): ImageSet

    Permalink
    Definition Classes
    PythonZoo
  514. def zooPredict(module: Module[T], x: List[JTensor], batchPerThread: Int): List[List[AnyRef]]

    Permalink
    Definition Classes
    PythonZoo
  515. def zooPredict(module: Predictable[T], x: JavaRDD[Sample], batchPerThread: Int): JavaRDD[List[AnyRef]]

    Permalink
    Definition Classes
    PythonZoo
  516. def zooPredictClasses(module: Predictable[T], x: JavaRDD[Sample], batchPerThread: Int, zeroBasedLabel: Boolean = true): JavaRDD[Int]

    Permalink
    Definition Classes
    PythonZoo

Inherited from PythonZoo[T]

Inherited from PythonBigDLKeras[T]

Inherited from PythonBigDL[T]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped