Retrieves the significant part of a word
Retrieves the significant part of a word
lemmatizer external dictionary, needs 'keyDelimiter' and 'valueDelimiter' in options for parsing target text
Path and options to lemma dictionary, in lemma vs possible words format.
Path and options to lemma dictionary, in lemma vs possible words format. readAs can be LINE_BY_LINE or SPARK_DATASET. options contain option passed to spark reader if readAs is SPARK_DATASET. lemmatizer external dictionary
input annotations columns currently used
Gets annotation column name going to generate
Gets annotation column name going to generate
Input annotator type : TOKEN
Input annotator type : TOKEN
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
Output annotator type : TOKEN
Output annotator type : TOKEN
setDictionary(path, keyDelimiter, valueDelimiter, readAs, options): Path and options to lemma dictionary, in lemma vs possible words format.
setDictionary(path, keyDelimiter, valueDelimiter, readAs, options): Path and options to lemma dictionary, in lemma vs possible words format. readAs can be LINE_BY_LINE or SPARK_DATASET. options contain option passed to spark reader if readAs is SPARK_DATASET. lemmatizer external dictionary
setDictionary(path, keyDelimiter, valueDelimiter, readAs, options): Path and options to lemma dictionary, in lemma vs possible words format.
setDictionary(path, keyDelimiter, valueDelimiter, readAs, options): Path and options to lemma dictionary, in lemma vs possible words format. readAs can be LINE_BY_LINE or SPARK_DATASET. options contain option passed to spark reader if readAs is SPARK_DATASET. lemmatizer external dictionary
Overrides required annotators column if different than default
Overrides required annotators column if different than default
Overrides annotation column name when transforming
Overrides annotation column name when transforming
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
required internal uid provided by constructor
required internal uid provided by constructor
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
to be validated
True if all the required types are present, else false
Required input and expected output annotator types
Class to find standarized lemmas from words. Uses a user-provided or default dictionary.
Retrieves lemmas out of words with the objective of returning a base dictionary word. Retrieves the significant part of a word.
lemmaDict: A dictionary of predefined lemmas must be provided
See https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/LemmatizerTestSpec.scala for examples of how to use this API