Class/Object

com.johnsnowlabs.nlp.embeddings

BertSentenceEmbeddings

Related Docs: object BertSentenceEmbeddings | package embeddings

Permalink

class BertSentenceEmbeddings extends AnnotatorModel[BertSentenceEmbeddings] with WriteTensorflowModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties

BERT (Bidirectional Encoder Representations from Transformers) provides dense vector representations for natural language by using a deep, pre-trained neural network with the Transformer architecture

See https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/BertSentenceEmbeddingsTestSpec.scala for further reference on how to use this API. Sources:

Sources :

https://arxiv.org/abs/1810.04805

https://github.com/google-research/bert

Paper abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. BertSentenceEmbeddings
  2. HasCaseSensitiveProperties
  3. HasStorageRef
  4. HasEmbeddingsProperties
  5. WriteTensorflowModel
  6. AnnotatorModel
  7. CanBeLazy
  8. RawAnnotator
  9. HasOutputAnnotationCol
  10. HasInputAnnotationCols
  11. HasOutputAnnotatorType
  12. ParamsAndFeaturesWritable
  13. HasFeatures
  14. DefaultParamsWritable
  15. MLWritable
  16. Model
  17. Transformer
  18. PipelineStage
  19. Logging
  20. Params
  21. Serializable
  22. Serializable
  23. Identifiable
  24. AnyRef
  25. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BertSentenceEmbeddings()

    Permalink
  2. new BertSentenceEmbeddings(uid: String)

    Permalink

Type Members

  1. type AnnotationContent = Seq[Row]

    Permalink

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String

    Permalink
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    BertSentenceEmbeddingsAnnotatorModel
  11. def annotate(annotations: Seq[Annotation]): Seq[Annotation]

    Permalink

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    annotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    BertSentenceEmbeddingsAnnotatorModel
  12. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  13. val batchSize: IntParam

    Permalink

    Batch size.

    Batch size. Large values allows faster processing but requires more memory.

  14. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]

    Permalink
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  15. val caseSensitive: BooleanParam

    Permalink
    Definition Classes
    HasCaseSensitiveProperties
  16. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  17. final def clear(param: Param[_]): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    Params
  18. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. val configProtoBytes: IntArrayParam

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  20. def copy(extra: ParamMap): BertSentenceEmbeddings

    Permalink

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  21. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  22. def createDatabaseConnection(database: Name): RocksDBConnection

    Permalink
    Definition Classes
    HasStorageRef
  23. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  24. def dfAnnotate: UserDefinedFunction

    Permalink

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column

    returns

    udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  25. val dimension: IntParam

    Permalink
    Definition Classes
    HasEmbeddingsProperties
  26. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  28. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  29. def explainParams(): String

    Permalink
    Definition Classes
    Params
  30. def extraValidate(structType: StructType): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. def extraValidateMsg: String

    Permalink

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  33. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  34. val features: ArrayBuffer[Feature[_, _, _]]

    Permalink
    Definition Classes
    HasFeatures
  35. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def get[T](feature: StructFeature[T]): Option[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: SetFeature[T]): Option[Set[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: ArrayFeature[T]): Option[Array[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  41. def getCaseSensitive: Boolean

    Permalink
    Definition Classes
    HasCaseSensitiveProperties
  42. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  43. def getConfigProtoBytes: Option[Array[Byte]]

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  44. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  45. def getDimension: Int

    Permalink
    Definition Classes
    HasEmbeddingsProperties
  46. def getInputCols: Array[String]

    Permalink

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  47. def getIsLong: Boolean

    Permalink

    get isLong

  48. def getLazyAnnotator: Boolean

    Permalink
    Definition Classes
    CanBeLazy
  49. def getMaxSentenceLength: Int

    Permalink

    Max sentence length to process

  50. def getModelIfNotSet: TensorflowBert

    Permalink

  51. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  52. final def getOutputCol: String

    Permalink

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  54. def getStorageRef: String

    Permalink
    Definition Classes
    HasStorageRef
  55. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  56. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  57. def hasParent: Boolean

    Permalink
    Definition Classes
    Model
  58. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  59. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  60. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. val inputAnnotatorTypes: Array[String]

    Permalink

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

    Definition Classes
    BertSentenceEmbeddingsHasInputAnnotationCols
  62. final val inputCols: StringArrayParam

    Permalink

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  63. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  64. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  65. val isLong: BooleanParam

    Permalink

    Use Long type instead of Int type for inputs

  66. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  67. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. val lazyAnnotator: BooleanParam

    Permalink
    Definition Classes
    CanBeLazy
  69. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. val maxSentenceLength: IntParam

    Permalink

    Max sentence length to process

  82. def msgHelper(schema: StructType): String

    Permalink
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  83. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  84. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  85. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  86. def onWrite(path: String, spark: SparkSession): Unit

    Permalink
  87. val outputAnnotatorType: AnnotatorType

    Permalink
  88. final val outputCol: Param[String]

    Permalink
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  89. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  90. var parent: Estimator[BertSentenceEmbeddings]

    Permalink
    Definition Classes
    Model
  91. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  92. def sentenceEndTokenId: Int

    Permalink

  93. def sentenceStartTokenId: Int

    Permalink

  94. def set[T](feature: StructFeature[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  95. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  96. def set[T](feature: SetFeature[T], value: Set[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  97. def set[T](feature: ArrayFeature[T], value: Array[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  98. final def set(paramPair: ParamPair[_]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  99. final def set(param: String, value: Any): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  100. final def set[T](param: Param[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    Params
  101. def setBatchSize(size: Int): BertSentenceEmbeddings.this.type

    Permalink

    Batch size.

    Batch size. Large values allows faster processing but requires more memory.

  102. def setCaseSensitive(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink

    Whether to lowercase tokens or not

    Whether to lowercase tokens or not

    Definition Classes
    BertSentenceEmbeddingsHasCaseSensitiveProperties
  103. def setConfigProtoBytes(bytes: Array[Int]): BertSentenceEmbeddings.this.type

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  104. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  105. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  106. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. final def setDefault(paramPairs: ParamPair[_]*): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  109. final def setDefault[T](param: Param[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  110. def setDimension(value: Int): BertSentenceEmbeddings.this.type

    Permalink

    Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file

    Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file

    Definition Classes
    BertSentenceEmbeddingsHasEmbeddingsProperties
  111. final def setInputCols(value: String*): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    HasInputAnnotationCols
  112. final def setInputCols(value: Array[String]): BertSentenceEmbeddings.this.type

    Permalink

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  113. def setIsLong(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink

    set isLong

  114. def setLazyAnnotator(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    CanBeLazy
  115. def setMaxSentenceLength(value: Int): BertSentenceEmbeddings.this.type

    Permalink

    Max sentence length to process

  116. def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): BertSentenceEmbeddings.this.type

    Permalink

  117. final def setOutputCol(value: String): BertSentenceEmbeddings.this.type

    Permalink

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  118. def setParent(parent: Estimator[BertSentenceEmbeddings]): BertSentenceEmbeddings

    Permalink
    Definition Classes
    Model
  119. def setStorageRef(value: String): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    HasStorageRef
  120. def setVocabulary(value: Map[String, Int]): BertSentenceEmbeddings.this.type

    Permalink

    Vocabulary used to encode the words to ids with WordPieceEncoder

  121. val storageRef: Param[String]

    Permalink
    Definition Classes
    HasStorageRef
  122. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  123. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  124. def tokenize(sentences: Seq[Sentence]): Seq[WordpieceTokenizedSentence]

    Permalink
  125. final def transform(dataset: Dataset[_]): DataFrame

    Permalink

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  126. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  127. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  128. final def transformSchema(schema: StructType): StructType

    Permalink

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  129. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  130. val uid: String

    Permalink
    Definition Classes
    BertSentenceEmbeddings → Identifiable
  131. def validate(schema: StructType): Boolean

    Permalink

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  132. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit

    Permalink
    Definition Classes
    HasStorageRef
  133. val vocabulary: MapFeature[String, Int]

    Permalink

    vocabulary

  134. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  135. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  136. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  137. def wrapColumnMetadata(col: Column): Column

    Permalink
    Attributes
    protected
    Definition Classes
    RawAnnotator
  138. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column

    Permalink
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  139. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column

    Permalink
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  140. def write: MLWriter

    Permalink
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  141. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel
  142. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel
  143. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[BertSentenceEmbeddings]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Members

Parameter setters

Parameter getters