Package

scalaz

Permalink

package scalaz

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. scalaz
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type :<:[F[_], G[_]] = Inject[F, G]

    Permalink
  2. type :≺:[F[_], G[_]] = Inject[F, G]

    Permalink
  3. type <~[+F[_], -G[_]] = NaturalTransformation[G, F]

    Permalink
  4. type =?>[E, A] = Kleisli[Option, E, A]

    Permalink
  5. type @>[A, B] = LensFamily[A, A, B, B]

    Permalink
  6. type @?>[A, B] = PLensFamily[A, A, B, B]

    Permalink
  7. type @@[T, Tag] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  8. type Alternative[F[_]] = ApplicativePlus[F]

    Permalink
  9. type Cont[R, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, R, A]

    Permalink
  10. type ContT[M[_], R, A] = IndexedContsT[scalaz.Id.Id, M, R, R, A]

    Permalink
  11. type Conts[W[_], R, A] = IndexedContsT[W, scalaz.Id.Id, R, R, A]

    Permalink
  12. type ContsT[W[_], M[_], R, A] = IndexedContsT[W, M, R, R, A]

    Permalink
  13. type DLeft[+A] = -\/[A]

    Permalink
  14. type DRight[+B] = \/-[B]

    Permalink
  15. type Disjunction[+A, +B] = \/[A, B]

    Permalink
  16. type DisjunctionT[F[_], A, B] = EitherT[F, A, B]

    Permalink
  17. type FirstMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  18. type FirstOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  19. type FirstOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  20. type GlorifiedTuple[+A, +B] = \/[A, B]

    Permalink
  21. type IMap[A, B] = ==>>[A, B]

    Permalink
  22. type IRWS[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  23. type IRWST[F[_], -R, W, -S1, S2, A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]

    Permalink
  24. type IndexedCont[R, O, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, O, A]

    Permalink
  25. type IndexedContT[M[_], R, O, A] = IndexedContsT[scalaz.Id.Id, M, R, O, A]

    Permalink
  26. type IndexedConts[W[_], R, O, A] = IndexedContsT[W, scalaz.Id.Id, R, O, A]

    Permalink
  27. type IndexedReaderWriterState[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  28. type IndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, A]

    Permalink
  29. type IndexedStore[I, A, B] = IndexedStoreT[scalaz.Id.Id, I, A, B]

    Permalink
  30. type LastMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  31. type LastOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  32. type LastOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  33. type Lens[A, B] = LensFamily[A, A, B, B]

    Permalink
  34. type MaxMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  35. type MaxOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  36. type MaxOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  37. type MinMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  38. type MinOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  39. type MinOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  40. type NonEmptyIList[A] = OneAnd[IList, A]

    Permalink
  41. type PIndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, Option[A]]

    Permalink
  42. type PIndexedStateT[F[_], -S1, S2, A] = IndexedStateT[F, S1, S2, Option[A]]

    Permalink
  43. type PLens[A, B] = PLensFamily[A, A, B, B]

    Permalink
  44. type PState[S, A] = IndexedStateT[scalaz.Id.Id, S, S, Option[A]]

    Permalink
  45. type PStateT[F[_], S, A] = IndexedStateT[F, S, S, Option[A]]

    Permalink
  46. type RWS[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  47. type RWST[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  48. type Reader[E, A] = Kleisli[scalaz.Id.Id, E, A]

    Permalink
  49. type ReaderT[F[_], E, A] = Kleisli[F, E, A]

    Permalink
  50. type ReaderWriterState[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  51. type ReaderWriterStateT[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  52. type State[S, A] = IndexedStateT[scalaz.Id.Id, S, S, A]

    Permalink
  53. type StateT[F[_], S, A] = IndexedStateT[F, S, S, A]

    Permalink
  54. type Store[A, B] = IndexedStoreT[scalaz.Id.Id, A, A, B]

    Permalink
  55. type StoreT[F[_], A, B] = IndexedStoreT[F, A, A, B]

    Permalink
  56. type Traced[A, B] = TracedT[scalaz.Id.Id, A, B]

    Permalink
  57. type Unwriter[W, A] = UnwriterT[scalaz.Id.Id, W, A]

    Permalink
  58. type ValidationNel[E, +X] = Validation[NonEmptyList[E], X]

    Permalink
  59. type Writer[W, A] = WriterT[scalaz.Id.Id, W, A]

    Permalink
  60. type |-->[A, B] = IndexedStoreT[scalaz.Id.Id, B, B, A]

    Permalink
  61. type |>=|[G[_], F[_]] = MonadPartialOrder[G, F]

    Permalink
  62. type ~>[-F[_], +G[_]] = NaturalTransformation[F, G]

    Permalink
  63. type ~~>[-F[_, _], +G[_, _]] = BiNaturalTransformation[F, G]

    Permalink
  64. type [A, B] = \/[A, B]

    Permalink
  65. type = Any

    Permalink
  66. type = Nothing

    Permalink

Value Members

  1. val DLeft: -\/.type

    Permalink
  2. val DRight: \/-.type

    Permalink
  3. val Disjunction: \/.type

    Permalink
  4. val DisjunctionT: EitherT.type

    Permalink
  5. val IMap: ==>>.type

    Permalink
  6. val IRWS: IndexedReaderWriterState.type

    Permalink
  7. val IRWST: IndexedReaderWriterStateT.type

    Permalink
  8. val RWS: ReaderWriterState.type

    Permalink
  9. val RWST: ReaderWriterStateT.type

    Permalink
  10. val ReaderT: Kleisli.type

    Permalink
  11. def Traced[A, B](f: (A) ⇒ B): Traced[A, B]

    Permalink
  12. implicit val idInstance: Traverse1[scalaz.Id.Id] with Monad[scalaz.Id.Id] with BindRec[scalaz.Id.Id] with Comonad[scalaz.Id.Id] with Distributive[scalaz.Id.Id] with Zip[scalaz.Id.Id] with Unzip[scalaz.Id.Id] with Align[scalaz.Id.Id] with Cozip[scalaz.Id.Id] with Optional[scalaz.Id.Id]

    Permalink
  13. package syntax

    Permalink

Inherited from AnyRef

Inherited from Any

Ungrouped