de.sciss.swingplus

Type members

Classlikes

final class ClientProperties(val component: Component) extends AnyVal
Swing component client properties are hidden accept for put and get. Therefore it lacks
any sort of iterator and we cannot implement collection.mutable.Map. This is a
compromise which provides a few methods known from collection.mutable.Map
Companion
class
sealed trait CloseOperation
Companion
object
object ComboBox
Companion
class
class ComboBox[A] extends Component with Publisher
Lets the user make a selection from a list of predefined items. Visually,
this is implemented as a button-like component with a pull-down menu.
See also
javax.swing.JComboBox
Companion
object
Companion
class
class DoClickAction(button: AbstractButton, title0: String) extends Action
A simple action that visually triggers a given button.
Companion
object
object DropMode
class EditorPane(contentType0: String, text0: String) extends EditorPane with TextComponent
class GridPanel(rows0: Int, cols0: Int) extends GridPanel
class GroupPanel extends Panel
A panel that uses javax.swing.GroupLayout to visually arrange its components.
Note: This is a slightly adapted variant of the original GroupPanel class
by Andreas Flier and which was part of the ScalaSwingContrib project.
We thought it was a bit over-engineered, and also some naming was
problematic (theHorizontalLayout is ...) and involving reflection-based
structural types.
The key point to understanding this layout manager is that it separates
horizontal and vertical layout. Thus, every component appears twice: once
in the horizontal and once in the vertical layout. Consult the Java API
documentation for GroupLayout and Sun's Java tutorials for a
comprehensive explanation.
The main advantage of using this panel instead of manually tinkering with
the layout is that this panel provides a concise, declarative syntax for
laying out its components. This approach should make most use cases easier.
In some special cases, e.g. when re-creating layouts on-the-fly, it might
be preferable to use a more imperative style, for which direct access to
the underlying layout manager is provided.
In contrast to the underlying swing layout, this panel activates the
automatic creation of gaps between components by default, since this panel
is intended for coding UIs "by hand", not so much for visual UI builder
tools. Many features of the underlying layout are aimed at those, tough.
Most of them are available through this panel for completeness' sake but it
is anticipated that coders won't need to use them very much.
=Code examples=
This section contains a few simple examples to showcase the basic
functionality of GroupPanels. For all examples, it is assumed
that everything from the package scala.swing is imported and the code is
placed inside a scala.swing.SimpleSwingApplication like this:
{{{
import scala.swing._
import de.sciss.swingplus._
object Example extends SimpleSwingApplication {
lazy val top = new MainFrame {
contents = new GroupPanel {
// example code here
}
}
}
}}}
==Simple panel with 2 components==
In the first example, there's a label and a text field, which appear
in a horizontal sequence but share the same vertical space.
{{{
val label = new Label("Label:")
val textField = new TextField(20)
horizontal = Seq(label, textField)
vertical = Par(label, textField)
}}}
It can be observed that the resize behaviour of the text field is rather
strange. To get better behaviour, the components' vertical sizes can be
linked together.
{{{
linkVerticalSize(label, textField)
}}}
Alternatively, it would have been possible to disallow the resizing of
the vertical, parallel group. To achieve this, the vertical layout line
should be written this way:
{{{
vertical = Par(Leading, FixedSize)(label, textField)
}}}
Since text fields aren't resizable when used with baseline alignment (more
about that further down), the following code also prevents (vertical)
resizing:
{{{
vertical = Par(Baseline)(label, textField)
}}}
==Size and alignment==
Components can be added with custom size constraints (minimum, preferred,
maximum size). The next example showcases that. The text field appears
with a preferred height of 100 pixels and when the component is resized,
it can be reduced to its minimum height of 50 pixels and enlarged
to its maximum height of 200 pixels.
{{{
horizontal = Seq(label, textField)
vertical = Par(label, Size(textField, 50, 100, 200))
}}}
The Size object holds some useful constants: Default, Preferred and Infinite,
that can be used for any of the minimum, preferred and maximum arguments.
Instead of using these hints with Size.apply, one can also use the
provided convenience methods Size.fixed and Size.fill.
Because the default alignment in a parallel group is Leading,
both components are "glued" to the top of the container (panel). To align
the label's text with the text inside the text field, an explicit alignment
can be specified in a preceding argument list, like this:
{{{
horizontal = Seq(label, textField)
vertical = Par(Baseline)(label, Size(textField, 50, 100, 200))
}}}
This example also shows a potential problem of baseline alignment: some
components stop being resizable. More specifically, the javadoc
for GroupLayout.ParallelGroup states:
  • Elements aligned to the baseline are resizable if they have have a
    baseline resize behavior of CONSTANT_ASCENT or CONSTANT_DESCENT.
  • Elements with a baseline resize behavior of OTHER or CENTER_OFFSET
    are not resizable.
Since a text field's resizing behaviour is CENTER_OFFSET, it is
not resizable when used with baseline alignment.
==Gaps==
The GroupPanel turns on automatic creation of gaps between
components and along the container edges. To see the difference, try turning
this feature off manually by inserting the following lines:
{{{
autoGaps = false
autoContainerGaps = false
}}}
With both types of gaps missing, the components are clamped together and to
the container edges, which does not look very pleasing. Gaps can be added
manually, too. The following example does this in order to get a result that
looks similar to the version with automatically created gaps, albeit in a
much more verbose manner.
{{{
horizontal = Seq(
Gap.Container(),
label,
Gap.Preferred(Related),
textField,
Gap.Container()
)
vertical = Seq(
Gap.Container(),
Parallel(label, textField),
Gap.Container()
)
}}}
Rigid gaps with custom size or completely manual gaps (specifying minimum,
preferred and maximum size) between components are created with
the Gap object:
{{{
bc.. horizontal = Seq(
label,
Gap(10, 20, 100),
textField
)
vertical = Seq(
Par(label, Gap(30), textField)
)
}}}
In a parallel group, such a gap can be used to specify a minimum amount of
space taken by the group.
In addition to rigid gaps in the previous example, it is also possible to
specify gaps that resize. This could be done by specifying a maximum size
of Infinite. However, for the most commonly used type of these, there is
a bit of syntax sugar available with the Spring
and ContainerSpring methods.
{{{
bc.. horizontal = Seq(
Gap.Container(),
label,
Gap.Spring(), // default is Related
textField,
Gap.ContainerSpring()
)
}}}
These create gaps that minimally are as wide as a Gap.Preferred would
be - it is possible to specify whether the Related or Unrelated distance
should be used - but can be resized to an arbitrary size.
{{{
bc.. horizontal = Seq(
Gap.Container(),
label,
Gap.Spring(Unrelated),
textField,
Gap.ContainerSpring()
)
}}}
The preferred size can also be specified more closely (Size.Default
or Size.Infinite aka "as large as possible"):
{{{
bc.. horizontal = Seq(
Gap.Container(),
label,
Gap.Spring(Unrelated, Size.Infinite),
textField,
Gap.ContainerSpring(Size.Infinite)
)
}}}
Please note that Gap.Preferred, Spring, Gap.Container and Spring.Container may
'''only''' be used inside a sequential group.
==A dialog with several components==
As a last, more sophisticated example, here's the GroupPanel
version of the "Find" dialog presented as example
for GroupLayout in the Java tutorials by Sun:
{{{
val label = new Label("Find what:")
val textField = new TextField
val caseCheckBox = new CheckBox("Match case")
val wholeCheckBox = new CheckBox("Whole words")
val wrapCheckBox = new CheckBox("Wrap around")
val backCheckBox = new CheckBox("Search backwards")
val findButton = new Button("Find")
val cancelButton = new Button("Cancel")
horizontal = Seq(
label,
Par(
textField,
Seq(
Par(caseCheckBox, wholeCheckBox),
Par(wrapCheckBox, backCheckBox)
)
),
Par(findButton, cancelButton)
)
linkHorizontalSize(findButton, cancelButton)
vertical = Seq(
Par(Baseline)(label, textField, findButton),
Par(
Seq(
Par(Baseline)(caseCheckBox, wrapCheckBox),
Par(Baseline)(wholeCheckBox, backCheckBox)
),
cancelButton
)
)
}}}
==Mapping component sequences==
Often you will want to build panels from a sequence of components and arrange them in a grid.
The Seq.apply and Par.apply methods take a sequence of GroupPanel.Element instances, and therefore
you may have to explicitly convert them, as the implicit conversion does not kick in for collections.
There are two possibilities, as demonstrated in the last example:
{{{
class Param(val check: CheckBox, val label: Label, val slider: Slider, val index: Spinner)
val p1 = new Param(
new CheckBox,
new Label("Foo"),
new Slider { value = 10 },
new Spinner(new SpinnerNumberModel(10, 0, 100, 1))
)
val p2 = new Param(
new CheckBox { selected = true },
new Label("Bar"),
new Slider,
new Spinner(new SpinnerNumberModel(50, 0, 100, 1))
)
val params = List(p1, p2)
horizontal = Seq(
Par(params.map(r => r.check: GroupPanel.Element): _),
Par(params.map(r => r.label: GroupPanel.Element): _),
new Par { params.foreach(r => contents += r.slider) },
new Par { params.foreach(r => contents += r.index ) }
)
vertical = Seq(
params.map { p =>
Par(Center)(p.check, p.label, p.slider, p.index)
}: _*
)
}}}
As can be seen, the Seq and Par classes can be instantiated and then populated through
calls to the contents member.
Authors
Hanns Holger Rutz
Andreas Flierl
See also
javax.swing.GroupLayout
Companion
object
object GroupPanel
Companion
class
abstract class Growable[-A] extends Growable[A]
object Implicits
Contains various extension methods for existing Swing components.
final case class Labeled[A](value: A)(label: String)
trait LazyPublisher extends Publisher
A publisher that subscribes itself to an underlying event source not before the first
reaction is installed. Can unsubscribe itself when the last reaction is uninstalled.
object ListView
Companion
class
class ListView[A] extends Component
A component that displays a number of elements in a list. A list view does
not support inline editing of items. If you need it, use a table view instead.
Named ListView to avoid a clash with the frequently used
scala.List
See also
javax.swing.JList
Companion
object
class OverlayPanel extends Panel with Wrapper
class PaddedIcon(inner: Icon, insets: Insets) extends Icon
class PopupMenu extends Component with Wrapper with Publisher
A popup menu component.
Example usage:
{{{
val popupMenu = new PopupMenu {
contents += new Menu("menu 1") {
contents += new RadioMenuItem("radio 1.1")
contents += new RadioMenuItem("radio 1.2")
}
contents += new Menu("menu 2") {
contents += new RadioMenuItem("radio 2.1")
contents += new RadioMenuItem("radio 2.2")
}
}
val button = new Button("Show Popup Menu")
reactions += {
case e: ButtonClicked => popupMenu.show(button, 0, button.bounds.height)
}
listenTo(button)
}}}
The component publishes PopupMenuCanceled, PopupMenuWillBecomeInvisible and PopupMenuWillBecomeVisible
events which can be used to determine when the menu is opened or closed.
Authors
John Sullivan
Ingo Maier
Hanns Holger Rutz
See also
javax.swing.JPopupMenu
class ScrollBar(orientation0: Value, value0: Int, blockIncrement0: Int, minimum0: Int, maximum0: Int) extends ScrollBar
swing.ScrollBar does not fire events. This class rectifies that.
object Separator
Companion
class
class Separator(orientation: Value) extends Component
Companion
object
class Spinner(model0: SpinnerModel) extends Component
class SpinnerComboBox[A](value0: A, minimum: A, maximum: A, step: A, items: Seq[A])(num: Numeric[A]) extends ComboBox[A]
A ComboBox for editable numbers. Numbers such as Int or Double are presented
inside a Spinner editor component. The combo-box carries a list of preset numbers.
trait TextComponent extends TextComponent
class ToolBar(orientation: Value)(contents0: Component*) extends Component with Wrapper