Trait

dsptools.numbers

FixedPointOrder

Related Doc: package numbers

Permalink

trait FixedPointOrder extends Order[FixedPoint] with hasContext

Linear Supertypes
hasContext, Order[FixedPoint], PartialOrder[FixedPoint], Eq[FixedPoint], Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FixedPointOrder
  2. hasContext
  3. Order
  4. PartialOrder
  5. Eq
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def getClass(): Class[_]

    Permalink
    Definition Classes
    Any

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def compare(x: FixedPoint, y: FixedPoint): ComparisonBundle

    Permalink
    Definition Classes
    FixedPointOrderOrder
  6. def context: DspContext

    Permalink
    Definition Classes
    hasContext
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  8. def eqv(x: FixedPoint, y: FixedPoint): Bool

    Permalink

    Returns true if x and y are equivalent, false otherwise.

    Returns true if x and y are equivalent, false otherwise.

    Definition Classes
    FixedPointOrderOrderPartialOrderEq
  9. def gt(x: FixedPoint, y: FixedPoint): Bool

    Permalink
    Definition Classes
    FixedPointOrderOrderPartialOrder
  10. def gteqv(x: FixedPoint, y: FixedPoint): Bool

    Permalink
    Definition Classes
    FixedPointOrderOrderPartialOrder
  11. def hashCode(): Int

    Permalink
    Definition Classes
    Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. def lt(x: FixedPoint, y: FixedPoint): Bool

    Permalink
    Definition Classes
    FixedPointOrderOrderPartialOrder
  14. def lteqv(x: FixedPoint, y: FixedPoint): Bool

    Permalink
    Definition Classes
    FixedPointOrderOrderPartialOrder
  15. def max(x: FixedPoint, y: FixedPoint): FixedPoint

    Permalink
    Definition Classes
    Order
  16. def min(x: FixedPoint, y: FixedPoint): FixedPoint

    Permalink
    Definition Classes
    Order
  17. def neqv(x: FixedPoint, y: FixedPoint): Bool

    Permalink

    Returns false if x and y are equivalent, true otherwise.

    Returns false if x and y are equivalent, true otherwise.

    Definition Classes
    FixedPointOrderEq
  18. def on[B <: Data](f: (B) ⇒ FixedPoint): Order[B]

    Permalink

    Defines an order on B by mapping B to A using f and using As order to order B.

    Defines an order on B by mapping B to A using f and using As order to order B.

    Definition Classes
    OrderPartialOrderEq
  19. def partialCompare(x: FixedPoint, y: FixedPoint): ValidIO[ComparisonBundle]

    Permalink

    Result of comparing x with y.

    Result of comparing x with y. Returns ValidIO[ComparisonBundle] with valid false if operands are not comparable. If operands are comparable, bits.lt will be true if x < y and bits.eq will be true if x = y

    Definition Classes
    OrderPartialOrder
  20. def pmax(x: FixedPoint, y: FixedPoint): ValidIO[FixedPoint]

    Permalink

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Definition Classes
    PartialOrder
  21. def pmin(x: FixedPoint, y: FixedPoint): ValidIO[FixedPoint]

    Permalink

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Definition Classes
    PartialOrder
  22. def reverse: Order[FixedPoint]

    Permalink

    Defines an ordering on A where all arrows switch direction.

    Defines an ordering on A where all arrows switch direction.

    Definition Classes
    OrderPartialOrder
  23. def toString(): String

    Permalink
    Definition Classes
    Any

Inherited from hasContext

Inherited from Order[FixedPoint]

Inherited from PartialOrder[FixedPoint]

Inherited from Eq[FixedPoint]

Inherited from Any

Ungrouped