Trait/Object

dsptools.numbers

Real

Related Docs: object Real | package numbers

Permalink

trait Real[A <: Data] extends Ring[A] with ConvertableTo[A] with IsReal[A]

Linear Supertypes
IsReal[A], Signed[A], Order[A], PartialOrder[A], Eq[A], ConvertableTo[A], spire.math.ConvertableTo[A], Ring[A], algebra.ring.Ring[A], Rng[A], AdditiveCommutativeGroup[A], algebra.ring.AdditiveGroup[A], Rig[A], MultiplicativeMonoid[A], Semiring[A], MultiplicativeSemigroup[A], AdditiveCommutativeMonoid[A], AdditiveCommutativeSemigroup[A], AdditiveMonoid[A], AdditiveSemigroup[A], Serializable, Serializable, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Real
  2. IsReal
  3. Signed
  4. Order
  5. PartialOrder
  6. Eq
  7. ConvertableTo
  8. ConvertableTo
  9. Ring
  10. Ring
  11. Rng
  12. AdditiveCommutativeGroup
  13. AdditiveGroup
  14. Rig
  15. MultiplicativeMonoid
  16. Semiring
  17. MultiplicativeSemigroup
  18. AdditiveCommutativeMonoid
  19. AdditiveCommutativeSemigroup
  20. AdditiveMonoid
  21. AdditiveSemigroup
  22. Serializable
  23. Serializable
  24. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def abs(a: A): A

    Permalink

    An idempotent function that ensures an object has a non-negative sign.

    An idempotent function that ensures an object has a non-negative sign.

    Definition Classes
    Signed
  2. abstract def ceil(a: A): A

    Permalink

    Rounds a the nearest integer that is greater than or equal to a.

    Rounds a the nearest integer that is greater than or equal to a.

    Definition Classes
    IsReal
  3. abstract def compare(x: A, y: A): ComparisonBundle

    Permalink
    Definition Classes
    Order
  4. abstract def context_abs(a: A): A

    Permalink
    Definition Classes
    Signed
  5. abstract def floor(a: A): A

    Permalink

    Rounds a the nearest integer that is less than or equal to a.

    Rounds a the nearest integer that is less than or equal to a.

    Definition Classes
    IsReal
  6. abstract def fromBigDecimal(n: BigDecimal): A

    Permalink
    Definition Classes
    ConvertableTo
  7. abstract def fromByte(n: Byte): A

    Permalink
    Definition Classes
    ConvertableTo
  8. abstract def fromDouble(d: Double, a: A): A

    Permalink
    Definition Classes
    ConvertableTo
  9. abstract def fromDouble(n: Double): A

    Permalink
    Definition Classes
    ConvertableTo
  10. abstract def fromDoubleWithFixedWidth(d: Double, a: A): A

    Permalink
    Definition Classes
    ConvertableTo
  11. abstract def fromFloat(n: Float): A

    Permalink
    Definition Classes
    ConvertableTo
  12. abstract def fromLong(n: Long): A

    Permalink
    Definition Classes
    ConvertableTo
  13. abstract def fromShort(n: Short): A

    Permalink
    Definition Classes
    ConvertableTo
  14. abstract def fromType[B](b: B)(implicit arg0: spire.math.ConvertableFrom[B]): A

    Permalink
    Definition Classes
    ConvertableTo
  15. abstract def getClass(): Class[_]

    Permalink
    Definition Classes
    Any
  16. abstract def isWhole(a: A): Bool

    Permalink

    Returns true iff a is a an integer.

    Returns true iff a is a an integer.

    Definition Classes
    IsReal
  17. abstract def minusContext(f: A, g: A): A

    Permalink
    Definition Classes
    Ring
  18. abstract def negate(x: A): A

    Permalink
    Definition Classes
    AdditiveGroup
  19. abstract def negateContext(f: A): A

    Permalink
    Definition Classes
    Ring
  20. abstract def one: A

    Permalink
    Definition Classes
    MultiplicativeMonoid
  21. abstract def plus(x: A, y: A): A

    Permalink
    Definition Classes
    AdditiveSemigroup
  22. abstract def plusContext(f: A, g: A): A

    Permalink
    Definition Classes
    Ring
  23. abstract def round(a: A): A

    Permalink

    Rounds a to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e.

    Rounds a to the nearest integer (When the fractional part is 0.5, tie breaking rounds to positive infinity i.e. round half up)

    Definition Classes
    IsReal
  24. abstract def signum(a: A): ComparisonBundle

    Permalink

    Returns 0 if a is 0, > 0 if a is positive, and < 0 is a is negative.

    Returns 0 if a is 0, > 0 if a is positive, and < 0 is a is negative.

    Definition Classes
    Signed
  25. abstract def times(x: A, y: A): A

    Permalink
    Definition Classes
    MultiplicativeSemigroup
  26. abstract def timesContext(f: A, g: A): A

    Permalink
    Definition Classes
    Ring
  27. abstract def truncate(a: A): A

    Permalink
    Definition Classes
    IsReal
  28. abstract def zero: A

    Permalink
    Definition Classes
    AdditiveMonoid

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  4. def additive: CommutativeGroup[A]

    Permalink
    Definition Classes
    AdditiveCommutativeGroup → AdditiveCommutativeMonoid → AdditiveCommutativeSemigroup → AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    Any
  7. def eqv(x: A, y: A): Bool

    Permalink

    Returns true if x and y are equivalent, false otherwise.

    Returns true if x and y are equivalent, false otherwise.

    Definition Classes
    OrderPartialOrderEq
  8. def fromAlgebraic(a: Algebraic): A

    Permalink
    Definition Classes
    Real → ConvertableTo
  9. def fromBigInt(n: BigInt): A

    Permalink
    Definition Classes
    Ring
  10. def fromInt(n: Int): A

    Permalink
    Definition Classes
    Ring
  11. def fromRational(a: Rational): A

    Permalink
    Definition Classes
    Real → ConvertableTo
  12. def fromReal(a: spire.math.Real): A

    Permalink
    Definition Classes
    Real → ConvertableTo
  13. def gt(x: A, y: A): Bool

    Permalink
    Definition Classes
    OrderPartialOrder
  14. def gteqv(x: A, y: A): Bool

    Permalink
    Definition Classes
    OrderPartialOrder
  15. def hashCode(): Int

    Permalink
    Definition Classes
    Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def isOne(a: A)(implicit ev: algebra.Eq[A]): Boolean

    Permalink
    Definition Classes
    MultiplicativeMonoid
  18. def isSignNegative(a: A): Bool

    Permalink
    Definition Classes
    Signed
  19. def isSignNonNegative(a: A): Bool

    Permalink
    Definition Classes
    Signed
  20. def isSignNonPositive(a: A): Bool

    Permalink
    Definition Classes
    Signed
  21. def isSignNonZero(a: A): Bool

    Permalink
    Definition Classes
    Signed
  22. def isSignPositive(a: A): Bool

    Permalink
    Definition Classes
    Signed
  23. def isSignZero(a: A): Bool

    Permalink
    Definition Classes
    Signed
  24. def isZero(a: A)(implicit ev: algebra.Eq[A]): Boolean

    Permalink
    Definition Classes
    AdditiveMonoid
  25. def lt(x: A, y: A): Bool

    Permalink
    Definition Classes
    OrderPartialOrder
  26. def lteqv(x: A, y: A): Bool

    Permalink
    Definition Classes
    OrderPartialOrder
  27. def max(x: A, y: A): A

    Permalink
    Definition Classes
    Order
  28. def min(x: A, y: A): A

    Permalink
    Definition Classes
    Order
  29. def minus(x: A, y: A): A

    Permalink
    Definition Classes
    AdditiveGroup
  30. def multiplicative: Monoid[A]

    Permalink
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  31. def neqv(x: A, y: A): Bool

    Permalink

    Returns false if x and y are equivalent, true otherwise.

    Returns false if x and y are equivalent, true otherwise.

    Definition Classes
    Eq
  32. def on[B <: Data](f: (B) ⇒ A): Order[B]

    Permalink

    Defines an order on B by mapping B to A using f and using As order to order B.

    Defines an order on B by mapping B to A using f and using As order to order B.

    Definition Classes
    OrderPartialOrderEq
  33. def partialCompare(x: A, y: A): ValidIO[ComparisonBundle]

    Permalink

    Result of comparing x with y.

    Result of comparing x with y. Returns ValidIO[ComparisonBundle] with valid false if operands are not comparable. If operands are comparable, bits.lt will be true if x < y and bits.eq will be true if x = y

    Definition Classes
    OrderPartialOrder
  34. def pmax(x: A, y: A): ValidIO[A]

    Permalink

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Returns Some(x) if x >= y, Some(y) if x < y, otherwise None.

    Definition Classes
    PartialOrder
  35. def pmin(x: A, y: A): ValidIO[A]

    Permalink

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Returns Some(x) if x <= y, Some(y) if x > y, otherwise None.

    Definition Classes
    PartialOrder
  36. def positivePow(a: A, n: Int): A

    Permalink
    Attributes
    protected[this]
    Definition Classes
    MultiplicativeSemigroup
  37. def positiveSumN(a: A, n: Int): A

    Permalink
    Attributes
    protected[this]
    Definition Classes
    AdditiveSemigroup
  38. def pow(a: A, n: Int): A

    Permalink
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  39. def product(as: TraversableOnce[A]): A

    Permalink
    Definition Classes
    MultiplicativeMonoid
  40. def reverse: Order[A]

    Permalink

    Defines an ordering on A where all arrows switch direction.

    Defines an ordering on A where all arrows switch direction.

    Definition Classes
    OrderPartialOrder
  41. def sign(a: A): Sign

    Permalink

    Returns Zero if a is 0, Positive if a is positive, and Negative is a is negative.

    Returns Zero if a is 0, Positive if a is positive, and Negative is a is negative.

    Definition Classes
    Signed
  42. def sum(as: TraversableOnce[A]): A

    Permalink
    Definition Classes
    AdditiveMonoid
  43. def sumN(a: A, n: Int): A

    Permalink
    Definition Classes
    AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
  44. def toString(): String

    Permalink
    Definition Classes
    Any
  45. def tryProduct(as: TraversableOnce[A]): Option[A]

    Permalink
    Definition Classes
    MultiplicativeMonoid → MultiplicativeSemigroup
  46. def trySum(as: TraversableOnce[A]): Option[A]

    Permalink
    Definition Classes
    AdditiveMonoid → AdditiveSemigroup

Inherited from IsReal[A]

Inherited from Signed[A]

Inherited from Order[A]

Inherited from PartialOrder[A]

Inherited from Eq[A]

Inherited from ConvertableTo[A]

Inherited from spire.math.ConvertableTo[A]

Inherited from Ring[A]

Inherited from algebra.ring.Ring[A]

Inherited from Rng[A]

Inherited from AdditiveCommutativeGroup[A]

Inherited from algebra.ring.AdditiveGroup[A]

Inherited from Rig[A]

Inherited from MultiplicativeMonoid[A]

Inherited from Semiring[A]

Inherited from MultiplicativeSemigroup[A]

Inherited from AdditiveCommutativeMonoid[A]

Inherited from AdditiveCommutativeSemigroup[A]

Inherited from AdditiveMonoid[A]

Inherited from AdditiveSemigroup[A]

Inherited from Serializable

Inherited from Serializable

Inherited from Any

Ungrouped