Object

mhtml.implicits

cats

Related Doc: package implicits

Permalink

object cats

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. cats
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. implicit val mhtmlRxMonadIntstance: Monad[Rx]

    Permalink

    Monad instance for Rx.

    Monad instance for Rx. Proof:

    # Left identity law: M.flatMap(M.pure(a), f) === f(a)

    Proving that LHS.impure.foreach(effect) == RHS.impure.foreach(effect). Starting from the LHS.

    <=> (by definition of M) FlatMap(Pure(a), f).impure.foreach(effect)

    <=> (by definition of .impure.foreach for FlatMap) var c1 = Cancelable.empty val c2 = run(Pure(a)) { b => // [self := Pure(a)] c1.cancel val fa = f(b) c1 = run(fa)(effect) } Cancelable { () => c1.cancel; c2.cancel }

    <=> (by definition of .impure.foreach for Pure) var c1 = Cancelable.empty val c2 = { { b => // [effect := { b => ... }] c1.cancel val fa = f(b) c1 = run(fa)(effect) }.apply(a) Cancelable.empty } Cancelable { () => c1.cancel; c2.cancel }

    <=> (by beta reduction on the { b => ... } closure) var c1 = Cancelable.empty val c2 = { c1.cancel val fa = f(a) c1 = run(fa)(effect) Cancelable.empty } Cancelable { () => c1.cancel; c2.cancel }

    <=> (simplifications following from Cancelable.empty.cancel === ()) run(f(a))(effect)

    <=> (by definition of .impure.foreach) f(a).impure.foreach(effect)

    Both sides are equivalent. Q.E.D.

    # Right identity law: M.flatMap(m, M.pure) === m

    Proving that LHS.impure.foreach(effect) == RHS.impure.foreach(effect). Starting from the LHS.

    (by definition of M) FlatMap(m, Pure).impure.foreach(effect)

    <=> (by definition of .impure.foreach for FlatMap) var c1 = Cancelable.empty val c2 = run(m) { b => // [self := m] c1.cancel val fa = Pure(b) // [f := Pure.apply] c1 = run(fa)(effect) } Cancelable { () => c1.cancel; c2.cancel }

    <=> (by definition of .impure.foreach for Pure) var c1 = Cancelable.empty val c2 = run(m) { b => c1.cancel effect(b) // [a := b] Cancelable.empty } Cancelable { () => c1.cancel; c2.cancel }

    <=> (simplifications following from Cancelable.empty.cancel === ()) run(m)(effect)

    <=> (by definition of .impure.foreach) m.impure.foreach(effect)

    Both sides are equivalent. Q.E.D.

    # Associativity law: M.flatMap(M.flatMap(m, f), g) === M.flatMap(m, x => M.flatMap(f(x), g))

    Proving that LHS.impure.foreach(effect) == RHS.impure.foreach(effect). Starting from the RHS.

    (by definition of M) FlatMap(m, x => FlatMap(f(x), g)).impure.foreach(effect)

    <=> (by definition of .impure.foreach for FlatMap (local variable primed)) var c1' = Cancelable.empty val c2' = run(m) { b' => // [self := m] c1'.cancel val fa' = FlatMap(f(b'), g) // [f := x => FlatMap(f(x), g)] + β reduction c1' = run(fa')(effect) } Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (by definition of run for FlatMap & inlining fa') var c1' = Cancelable.empty val c2' = run(m) { b' => c1'.cancel c1' = { var c1 = Cancelable.empty val c2 = run(f(b')) { b => // [self := f(b) ] c1.cancel val fa = g(b) // [f := g] c1 = run(fa)(effect) } Cancelable { () => c1.cancel; c2.cancel } } } Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (local inlining and reordering) (this step also uses the following equivalance:) { ... val c1 = <> ..} === var c1 = Cancelable.empty; { ... c1 = <> ...} var c1 = Cancelable.empty var c2 = Cancelable.empty val c2' = run(m) { b' => c2.cancel c2 = run(f(b')) { b => c1.cancel c1 = run(g(b))(effect) } } Cancelable { () => c1.cancel; c2.cancel; c2'.cancel }

    <=> (renamings [c1 := x, c2 := y, c2' := z, b' := b, b := b']) var x = Cancelable.empty var y = Cancelable.empty val z = run(m) { b => y.cancel y = run(f(b)) { b' => x.cancel x = run(g(b'))(effect) } } Cancelable { () => x.cancel; y.cancel; z.cancel }

    Starting from the LHS.

    (by definition of M) FlatMap(FlatMap(m, f), g).impure.foreach(effect)

    <=> (by definition of .impure.foreach for FlatMap (local variable primed)) var c1' = Cancelable.empty val c2' = run(FlatMap(m, f)) { b' => // [self' := FlatMap(m, f)] c1'.cancel val fa' = g(b') // [f' := g] c1' = run(fa')(effect) } Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (by definition of run for FlatMap) var c1' = Cancelable.empty val c2' = { var c1 = Cancelable.empty val c2 = run(m) { b => // [self := m] c1.cancel val fa = f(b) c1 = run(fa) { b' => // [effect := { b' => ... }] c1'.cancel val fa' = g(b') c1' = run(fa')(effect) } } Cancelable { () => c1.cancel; c2.cancel } } Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (local inlining and reordering) var c1' = Cancelable.empty var c1 = Cancelable.empty val c2 = run(m) { b => c1.cancel c1 = run(f(b)) { b' => c1'.cancel c1' = run(g(b'))(effect) } } Cancelable { () => c1'.cancel; c1.cancel; c2.cancel }

    <=> (renamings [c1' := x, c1 := y, c2 := z]) var x = Cancelable.empty var y = Cancelable.empty val z = run(m) { b => y.cancel y = run(f(b)) { b' => x.cancel x = run(g(b'))(effect) } } Cancelable { () => x.cancel; y.cancel; z.cancel }

    Both sides are equivalent. Q.E.D.

  13. implicit def mhtmlRxSemigroupIntstance[A]: Semigroup[Rx[A]]

    Permalink

    Semigroup instance for Rx.

    Semigroup instance for Rx. Proof:

    # Associativity law: S.combine(S.combine(x, y), z) = S.combine(x, Semigroup[Rx].combine(y, z))

    Proving that LHS.impure.foreach(effect) == RHS.impure.foreach(effect). Starting from the RHS.

    (by definition of Semigroup[Rx]) Merge(Merge(x, y), z).impure.foreach(effect)

    <=> (by definition of .impure.foreach for Merge (local variable primed)) val c1' = run(Merge(x, y))(effect) // [self := Merge(x, y)] val c2' = run(z)(effect) // [other := z] Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (by definition of run for Merge) val c1' = { val c1 = run(x)(effect) // [self := x] val c2 = run(y)(effect) // [other := y] Cancelable { () => c1.cancel; c2.cancel } } val c2' = run(z)(effect) Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (local inlining and reordering) val c1 = run(x)(effect) val c2 = run(y)(effect) val c2' = run(z)(effect) Cancelable { () => c1.cancel; c2.cancel; c2'.cancel }

    <=> (renamings [c1 := a, c2 := b, c2' := c]) val a = run(x)(effect) val b = run(y)(effect) val c = run(z)(effect) Cancelable { () => a.cancel; b.cancel; c.cancel }

    Starting from the LHS.

    (by definition of Semigroup[Rx]) Merge(x, Merge(y, z)).impure.foreach(effect)

    <=> (by definition of .impure.foreach for Merge (local variable primed)) val c1' = run(x)(effect) // [self := x] val c2' = run(Merge(y, z))(effect) // [other := Merge(y, z)] Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (by definition of run for Merge) val c1' = run(x)(effect) val c2' = { val c1 = run(y)(effect) // [self := y] val c2 = run(z)(effect) // [other := z] Cancelable { () => c1.cancel; c2.cancel } } Cancelable { () => c1'.cancel; c2'.cancel }

    <=> (local inlining and reordering) val c1' = run(x)(effect) val c1 = run(y)(effect) val c2 = run(z)(effect) Cancelable { () => c1'.cancel; c1.cancel; c2.cancel }

    <=> (renamings [c1' := a, c1 := b, c2 := c]) val a = run(x)(effect) val b = run(y)(effect) val c = run(z)(effect) Cancelable { () => a.cancel; b.cancel; c.cancel }

    Both sides are equivalent. Q.E.D.

  14. implicit def mhtmlVarSyntaxCartesian[A](fa: Var[A]): CartesianOps[Rx, A] { ... /* 2 definitions in type refinement */ }

    Permalink
  15. implicit def mhtmlVarSyntaxSemigroup[A](fa: Var[A]): SemigroupOps[Rx[A]]

    Permalink
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  20. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped