Class

io.github.mandar2812.dynaml.optimization

LeastSquaresSVMGradient

Related Doc: package optimization

Permalink

class LeastSquaresSVMGradient extends Gradient

Compute gradient and loss for a Least-squared loss function, as used in LS SVM. This is correct for the averaged least squares loss function (mean squared error) L = 1/2 (1 - y * weights dot x)**2 See also the documentation for the precise formulation.

Linear Supertypes
Gradient, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LeastSquaresSVMGradient
  2. Gradient
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LeastSquaresSVMGradient()

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def compute(data: DenseVector[Double], label: Double, weights: DenseVector[Double], cumGradient: DenseVector[Double]): Double

    Permalink

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided DenseVector[Double] to avoid creating new objects, and return loss.

    Compute the gradient and loss given the features of a single data point, add the gradient to a provided DenseVector[Double] to avoid creating new objects, and return loss.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    cumGradient

    the computed gradient will be added to this DenseVector[Double]

    returns

    loss

    Definition Classes
    LeastSquaresSVMGradientGradient
  7. def compute(data: DenseVector[Double], label: Double, weights: DenseVector[Double]): (DenseVector[Double], Double)

    Permalink

    Compute the gradient and loss given the features of a single data point.

    Compute the gradient and loss given the features of a single data point.

    data

    features for one data point

    label

    label for this data point

    weights

    weights/coefficients corresponding to features

    returns

    (gradient: DenseVector[Double], loss: Double)

    Definition Classes
    LeastSquaresSVMGradientGradient
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Gradient

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped