Class

io.github.mandar2812.dynaml.probability

BlockedMESNRV

Related Doc: package probability

Permalink

case class BlockedMESNRV(tau: Double, alpha: PartitionedVector, mu: PartitionedVector, sigma: PartitionedPSDMatrix) extends ContinuousRandomVariable[PartitionedVector] with ContinuousDistrRV[PartitionedVector] with Product with Serializable

Created by mandar on 28/02/2017.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BlockedMESNRV
  2. Product
  3. Equals
  4. ContinuousDistrRV
  5. ContinuousRVWithDistr
  6. RandomVarWithDistr
  7. HasDistribution
  8. ContinuousRandomVariable
  9. RandomVariable
  10. Serializable
  11. Serializable
  12. AnyRef
  13. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BlockedMESNRV(tau: Double, alpha: PartitionedVector, mu: PartitionedVector, sigma: PartitionedPSDMatrix)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def *(other: PartitionedVector)(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from multiplying a provided quantity in the Domain to the current random variable.

    Return the random variable that results from multiplying a provided quantity in the Domain to the current random variable.

    other

    The value to be multiplied to this random variable.

    ev

    An implicit parameter, which represents a Field defined over the set Domain.

    Definition Classes
    ContinuousRandomVariable
  4. def *(other: ContinuousRandomVariable[PartitionedVector])(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from multiplying a provided random variable to the current random variable.

    Return the random variable that results from multiplying a provided random variable to the current random variable.

    other

    The random variable to be multiplied to this.

    ev

    An implicit parameter, which represents a Field defined over the set Domain.

    Definition Classes
    ContinuousRandomVariable
  5. def +(other: PartitionedVector)(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from adding a provided quantity in the Domain to the current random variable.

    Return the random variable that results from adding a provided quantity in the Domain to the current random variable.

    other

    The value to be added to this random variable.

    ev

    An implicit parameter, which represents a Field defined over the set Domain.

    Definition Classes
    ContinuousRandomVariable
  6. def +(other: ContinuousRandomVariable[PartitionedVector])(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from adding a provided random variable to the current random variable.

    Return the random variable that results from adding a provided random variable to the current random variable.

    other

    The random variable to be added to this.

    Definition Classes
    ContinuousRandomVariable
  7. def -(other: PartitionedVector)(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from subtracting a provided quantity in the Domain from the current random variable.

    Return the random variable that results from subtracting a provided quantity in the Domain from the current random variable.

    other

    The value to be subtracted from this random variable.

    ev

    An implicit parameter, which represents a Field defined over the set Domain.

    Definition Classes
    ContinuousRandomVariable
  8. def -(other: ContinuousRandomVariable[PartitionedVector])(implicit ev: Field[PartitionedVector]): ContinuousRandomVariable[PartitionedVector]

    Permalink

    Return the random variable that results from subtracting a provided random variable from the current random variable.

    Return the random variable that results from subtracting a provided random variable from the current random variable.

    other

    The random variable to be subtracted from this.

    ev

    An implicit parameter, which represents a Field defined over the set Domain.

    Definition Classes
    ContinuousRandomVariable
  9. def :*[Domain1](other: ContinuousDistrRV[Domain1])(implicit ev: Field[PartitionedVector], ev1: Field[Domain1], eq: Eq[PartitionedVector], eq1: Eq[Domain1]): ContinuousDistrRV[(PartitionedVector, Domain1)]

    Permalink
    Definition Classes
    ContinuousDistrRV
  10. def :*[OtherDomain, OtherDistr <: ContinuousDistr[OtherDomain]](other: ContinuousRVWithDistr[OtherDomain, OtherDistr]): ContinuousRVWithDistr[(PartitionedVector, OtherDomain), ContinuousDistr[(PartitionedVector, OtherDomain)]]

    Permalink
    Definition Classes
    ContinuousRVWithDistr
  11. def :*[Domain1, Dist1 <: Density[Domain1] with Rand[Domain1]](other: RandomVarWithDistr[Domain1, Dist1]): RandomVarWithDistr[(PartitionedVector, Domain1), GenericDistribution[(PartitionedVector, Domain1)]]

    Permalink

    Cartesian product with another random variables which has a defined probability distribution.

    Cartesian product with another random variables which has a defined probability distribution.

    Definition Classes
    RandomVarWithDistr
  12. def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[(PartitionedVector, Domain1)]

    Permalink

    Outputs the cartesian product between two random variables.

    Outputs the cartesian product between two random variables.

    Domain1

    The domain of the other random variable

    other

    The random variable which forms the second component of the cartesian product.

    Definition Classes
    RandomVariable
  13. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def >[OtherDomain](transformation: DataPipe[PartitionedVector, OtherDomain]): MeasurableFunction[PartitionedVector, OtherDomain, RandomVariable[PartitionedVector]]

    Permalink

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Definition Classes
    RandomVariable
  15. val alpha: PartitionedVector

    Permalink
  16. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  17. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. def draw: PartitionedVector

    Permalink

    Alias for sample.run()

    Alias for sample.run()

    Definition Classes
    RandomVariable
  19. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. def iid(n: Int): IIDContinuousRVDistr[PartitionedVector, ContinuousDistr[PartitionedVector], BlockedMESNRV.this.type]

    Permalink

    Create an iid random variable from the current (this)

    Create an iid random variable from the current (this)

    n

    The number of iid samples of the base random variable.

    Definition Classes
    ContinuousRVWithDistrRandomVarWithDistrRandomVariable
  23. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  24. val mu: PartitionedVector

    Permalink
  25. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  26. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  27. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. val sample: DataPipe[Unit, PartitionedVector]

    Permalink

    Generate a sample from the random variable

    Generate a sample from the random variable

    Definition Classes
    ContinuousRVWithDistrRandomVariable
  29. val sigma: PartitionedPSDMatrix

    Permalink
  30. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  31. val tau: Double

    Permalink
  32. val underlyingDist: BlockedMESN

    Permalink

    The actual probability density function is represented as a breeze Density object.

    The actual probability density function is represented as a breeze Density object.

    Definition Classes
    BlockedMESNRVContinuousRVWithDistrRandomVarWithDistrHasDistribution
  33. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from ContinuousRVWithDistr[PartitionedVector, ContinuousDistr[PartitionedVector]]

Inherited from RandomVarWithDistr[PartitionedVector, ContinuousDistr[PartitionedVector]]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped