Interface Langchain4jAzureOpenAiConfig
@ConfigRoot(phase=RUN_TIME)
@ConfigMapping(prefix="quarkus.langchain4j.azure-openai")
public interface Langchain4jAzureOpenAiConfig
-
Method Summary
Modifier and TypeMethodDescriptionapiKey()
Azure OpenAI API keyThe API version to use for this operation.baseUrl()
The base url for the Azure OpenAI resource.Chat model related settingsThe name of your model deployment.Embedding model related settingsWhether the OpenAI client should log requestsWhether the OpenAI client should log responsesThe maximum number of times to retryThe name of your Azure OpenAI Resourcetimeout()
Timeout for OpenAI calls
-
Method Details
-
resourceName
String resourceName()The name of your Azure OpenAI Resource -
deploymentId
String deploymentId()The name of your model deployment. You're required to first deploy a model before you can make calls. -
baseUrl
@WithDefault("https://${quarkus.langchain4j.azure-openai.resource-name}.openai.azure.com/openai/deployments/${quarkus.langchain4j.azure-openai.deployment-id}") String baseUrl()The base url for the Azure OpenAI resource. Defaults tohttps://${quarkus.langchain4j.azure-openai.resource-name}.openai.azure.com/openai/deployments/${quarkus.langchain4j.azure-openai.deployment-id}
. -
apiVersion
The API version to use for this operation. This follows the YYYY-MM-DD format -
apiKey
String apiKey()Azure OpenAI API key -
timeout
Timeout for OpenAI calls -
maxRetries
The maximum number of times to retry -
logRequests
Whether the OpenAI client should log requests -
logResponses
Whether the OpenAI client should log responses -
chatModel
ChatModelConfig chatModel()Chat model related settings -
embeddingModel
EmbeddingModelConfig embeddingModel()Embedding model related settings
-