Object

org.apache.spark.graphx.lib

SVDPlusPlus

Related Doc: package lib

Permalink

object SVDPlusPlus

Implementation of SVD++ algorithm.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SVDPlusPlus
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. class Conf extends Serializable

    Permalink

    Configuration parameters for SVDPlusPlus.

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. def run(edges: RDD[Edge[Double]], conf: Conf): (Graph[(Array[Double], Array[Double], Double, Double), Double], Double)

    Permalink

    Implement SVD++ based on "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model", available at here.

    Implement SVD++ based on "Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model", available at here.

    The prediction rule is rui = u + bu + bi + qi*(pu + |N(u)|-0.5*sum(y)), see the details on page 6.

    edges

    edges for constructing the graph

    conf

    SVDPlusPlus parameters

    returns

    a graph with vertex attributes containing the trained model

  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  17. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped