Class/Object

org.apache.spark.sql

SnappyContext

Related Docs: object SnappyContext | package sql

Permalink

class SnappyContext extends SQLContext with Serializable

Main entry point for SnappyData extensions to Spark. A SnappyContext extends Spark's org.apache.spark.sql.SQLContext to work with Row and Column tables. Any DataFrame can be managed as SnappyData tables and any table can be accessed as a DataFrame. This integrates the SQLContext functionality with the Snappy store.

When running in the embedded mode (i.e. Spark executor collocated with Snappy data store), Applications typically submit Jobs to the Snappy-JobServer (provide link) and do not explicitly create a SnappyContext. A single shared context managed by SnappyData makes it possible to re-use Executors across client connections or applications.

SnappyContext uses a HiveMetaStore for catalog , which is persistent. This enables table metadata info recreated on driver restart.

User should use obtain reference to a SnappyContext instance as below val snc: SnappyContext = SnappyContext.getOrCreate(sparkContext)

Self Type
SnappyContext
To do

Provide links to above descriptions

,

document describing the Job server API

See also

https://github.com/TIBCOSoftware/snappydata

https://tibcosoftware.github.io/snappydata/1.3.1/quickstart/snappydataquick_start/

Linear Supertypes
SQLContext, Serializable, Serializable, internal.Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SnappyContext
  2. SQLContext
  3. Serializable
  4. Serializable
  5. Logging
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SnappyContext(sc: SparkContext)

    Permalink
    Attributes
    protected[org.apache.spark]
  2. new SnappyContext(snappySession: SnappySession)

    Permalink
    Attributes
    protected[org.apache.spark]

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def alterTable(tableName: String, isAddColumn: Boolean, column: StructField, extensions: String = ""): Unit

    Permalink

    alter table adds/drops provided column, only supprted for row tables.

    alter table adds/drops provided column, only supprted for row tables. For adding a column isAddColumn should be true, else it will be drop column

  5. def appendToTempTableCache(df: DataFrame, table: String, storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK): Unit

    Permalink

    Append dataframe to cache table in Spark.

    Append dataframe to cache table in Spark.

    storageLevel

    default storage level is MEMORY_AND_DISK

    returns

    @todo -> return type?

    Annotations
    @DeveloperApi()
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame

    Permalink
    Definition Classes
    SQLContext
  8. def cacheTable(tableName: String): Unit

    Permalink
    Definition Classes
    SQLContext
  9. def clear(): Unit

    Permalink
  10. def clearCache(): Unit

    Permalink
    Definition Classes
    SQLContext
  11. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. def createApproxTSTopK(topKName: String, baseTable: String, keyColumnName: String, topkOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create approximate structure to query top-K with time series support.

    Create approximate structure to query top-K with time series support. Java friendly api.

    topKName

    the qualified name of the top-K structure

    baseTable

    the base table of the top-K structure, if any, or null

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using TopK with time series

  13. def createApproxTSTopK(topKName: String, baseTable: Option[String], keyColumnName: String, topkOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create approximate structure to query top-K with time series support.

    Create approximate structure to query top-K with time series support.

    topKName

    the qualified name of the top-K structure

    baseTable

    the base table of the top-K structure, if any

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using TopK with time series

  14. def createApproxTSTopK(topKName: String, baseTable: String, keyColumnName: String, inputDataSchema: StructType, topkOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create approximate structure to query top-K with time series support.

    Create approximate structure to query top-K with time series support. Java friendly api.

    topKName

    the qualified name of the top-K structure

    baseTable

    the base table of the top-K structure, if any, or null

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using TopK with time series

  15. def createApproxTSTopK(topKName: String, baseTable: Option[String], keyColumnName: String, inputDataSchema: StructType, topkOptions: Map[String, String], allowExisting: Boolean = false): DataFrame

    Permalink

    Create approximate structure to query top-K with time series support.

    Create approximate structure to query top-K with time series support.

    topKName

    the qualified name of the top-K structure

    baseTable

    the base table of the top-K structure, if any

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using TopK with time series

  16. def createDataFrame(rows: Seq[Row], schema: StructType): DataFrame

    Permalink
    Annotations
    @DeveloperApi()
  17. def createDataFrame(data: List[_], beanClass: Class[_]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  18. def createDataFrame(rdd: JavaRDD[_], beanClass: Class[_]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  19. def createDataFrame(rdd: RDD[_], beanClass: Class[_]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  20. def createDataFrame(rows: List[Row], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @DeveloperApi() @Evolving()
  21. def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @DeveloperApi() @Evolving()
  22. def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @DeveloperApi() @Evolving()
  23. def createDataFrame[A <: Product](data: Seq[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  24. def createDataFrame[A <: Product](rdd: RDD[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  25. def createDataFrameUsingRDD[A <: Product](rdd: RDD[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame

    Permalink

    :: Experimental :: Creates a DataFrame from an RDD of Product (e.g.

    :: Experimental :: Creates a DataFrame from an RDD of Product (e.g. case classes, tuples). This method handles generic array datatype like Array[Decimal]

  26. def createDataset[T](data: List[T])(implicit arg0: Encoder[T]): Dataset[T]

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  27. def createDataset[T](data: RDD[T])(implicit arg0: Encoder[T]): Dataset[T]

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental()
  28. def createDataset[T](data: Seq[T])(implicit arg0: Encoder[T]): Dataset[T]

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  29. def createExternalTable(tableName: String, source: String, schema: StructType, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  30. def createExternalTable(tableName: String, source: String, schema: StructType, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  31. def createExternalTable(tableName: String, source: String, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  32. def createExternalTable(tableName: String, source: String, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
  33. def createExternalTable(tableName: String, path: String, source: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
  34. def createExternalTable(tableName: String, path: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
  35. def createIndex(indexName: String, baseTable: String, indexColumns: Seq[(String, Option[SortDirection])], options: Map[String, String]): Unit

    Permalink

    Create an index on a table.

    Create an index on a table.

    indexName

    Index name which goes in the catalog

    baseTable

    Fully qualified name of table on which the index is created.

    indexColumns

    Columns on which the index has to be created with the direction of sorting. Direction can be specified as None.

    options

    Options for indexes. For e.g. column table index - ("COLOCATE_WITH"->"CUSTOMER"). row table index - ("INDEX_TYPE"->"GLOBAL HASH") or ("INDEX_TYPE"->"UNIQUE")

  36. def createIndex(indexName: String, baseTable: String, indexColumns: List[String], sortOrders: List[Boolean], options: Map[String, String]): Unit

    Permalink

    Create an index on a table.

    Create an index on a table.

    indexName

    Index name which goes in the catalog

    baseTable

    Fully qualified name of table on which the index is created.

    indexColumns

    Columns on which the index has to be created along with the sorting direction.

    sortOrders

    Sorting direction for indexColumns. The direction of index will be ascending if value is true and descending when value is false. The values in this list must exactly match indexColumns list. Direction can be specified as null in which case ascending is used.

    options

    Options for indexes. For e.g. column table index - ("COLOCATE_WITH"->"CUSTOMER"). row table index - ("INDEX_TYPE"->"GLOBAL HASH") or ("INDEX_TYPE"->"UNIQUE")

  37. def createSampleTable(tableName: String, baseTable: String, schema: StructType, samplingOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create a stratified sample table.

    Create a stratified sample table. Java friendly version.

    tableName

    the qualified name of the table

    baseTable

    the base table of the sample table, if any, or null

    schema

    schema of the table

    samplingOptions

    sampling options like QCS, reservoir size etc.

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using sample tables with time series and otherwise

  38. def createSampleTable(tableName: String, baseTable: Option[String], schema: StructType, samplingOptions: Map[String, String], allowExisting: Boolean = false): DataFrame

    Permalink

    Create a stratified sample table.

    Create a stratified sample table.

    tableName

    the qualified name of the table

    baseTable

    the base table of the sample table, if any

    schema

    schema of the table

    samplingOptions

    sampling options like QCS, reservoir size etc.

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using sample tables with time series and otherwise

  39. def createSampleTable(tableName: String, baseTable: String, samplingOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create a stratified sample table.

    Create a stratified sample table. Java friendly version.

    tableName

    the qualified name of the table

    baseTable

    the base table of the sample table, if any, or null

    samplingOptions

    sampling options like QCS, reservoir size etc.

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using sample tables with time series and otherwise

  40. def createSampleTable(tableName: String, baseTable: Option[String], samplingOptions: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Create a stratified sample table.

    Create a stratified sample table.

    tableName

    the qualified name of the table

    baseTable

    the base table of the sample table, if any

    samplingOptions

    sampling options like QCS, reservoir size etc.

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    To do

    provide lot more details and examples to explain creating and using sample tables with time series and otherwise

  41. def createTable(tableName: String, provider: String, schemaDDL: String, options: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Creates a SnappyData managed JDBC table which takes a free format ddl string.

    Creates a SnappyData managed JDBC table which takes a free format ddl string. The ddl string should adhere to syntax of underlying JDBC store. SnappyData ships with inbuilt JDBC store, which can be accessed by Row format data store. The option parameter can take connection details.

       val props = Map(
         "url" -> s"jdbc:derby:$path",
         "driver" -> "org.apache.derby.jdbc.EmbeddedDriver",
         "poolImpl" -> "tomcat",
         "user" -> "app",
         "password" -> "app"
       )
    
    val schemaDDL = "(OrderId INT NOT NULL PRIMARY KEY,ItemId INT, ITEMREF INT)"
    snappyContext.createTable("jdbcTable", "jdbc", schemaDDL, props)

    Any DataFrame of the same schema can be inserted into the JDBC table using DataFrameWriter API.

    e.g.

    case class Data(col1: Int, col2: Int, col3: Int)
    
    val data = Seq(Data(1, 2, 3), Data(7, 8, 9), Data(9, 2, 3), Data(4, 2, 3), Data(5, 6, 7))
    val dataDF = snc.createDataset(data)(Encoders.product)
    dataDF.write.insertInto("jdbcTable")
    tableName

    Name of the table

    provider

    Provider name 'ROW' or 'JDBC'.

    schemaDDL

    Table schema as a string interpreted by provider

    options

    Properties for table creation. See options list for different tables. https://github.com/TIBCOSoftware/snappydata /blob/master/docs/programming_guide/tables_in_snappydata.md

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

    Annotations
    @Experimental()
  42. def createTable(tableName: String, provider: String, schemaDDL: String, options: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Creates a SnappyData managed JDBC table which takes a free format ddl string.

    Creates a SnappyData managed JDBC table which takes a free format ddl string. The ddl string should adhere to syntax of underlying JDBC store. SnappyData ships with inbuilt JDBC store, which can be accessed by Row format data store. The option parameter can take connection details.

       val props = Map(
         "url" -> s"jdbc:derby:$path",
         "driver" -> "org.apache.derby.jdbc.EmbeddedDriver",
         "poolImpl" -> "tomcat",
         "user" -> "app",
         "password" -> "app"
       )
    
    val schemaDDL = "(OrderId INT NOT NULL PRIMARY KEY,ItemId INT, ITEMREF INT)"
    snappyContext.createTable("jdbcTable", "jdbc", schemaDDL, props)

    Any DataFrame of the same schema can be inserted into the JDBC table using DataFrameWriter API.

    e.g.

    case class Data(col1: Int, col2: Int, col3: Int)
    
    val data = Seq(Data(1, 2, 3), Data(7, 8, 9), Data(9, 2, 3), Data(4, 2, 3), Data(5, 6, 7))
    val dataDF = snc.createDataset(data)(Encoders.product)
    dataDF.write.insertInto("jdbcTable")
    tableName

    Name of the table

    provider

    Provider name 'ROW' or 'JDBC'.

    schemaDDL

    Table schema as a string interpreted by provider

    options

    Properties for table creation. See options list for different tables. https://github.com/TIBCOSoftware/snappydata /blob/master/docs/programming_guide/tables_in_snappydata.md

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

  43. def createTable(tableName: String, provider: String, schema: StructType, options: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Creates a SnappyData managed table.

    Creates a SnappyData managed table. Any relation providers (e.g. row, column etc) supported by SnappyData can be created here.

    case class Data(col1: Int, col2: Int, col3: Int)
    val props = Map.empty[String, String]
    val data = Seq(Data(1, 2, 3), Data(7, 8, 9), Data(9, 2, 3), Data(4, 2, 3), Data(5, 6, 7))
    val dataDF = snc.createDataset(data)(Encoders.product)
    snappyContext.createTable(tableName, "column", dataDF.schema, props)

    For other external relation providers, use createExternalTable.

    tableName

    Name of the table

    provider

    Provider name such as 'COLUMN', 'ROW', 'JDBC' etc.

    schema

    Table schema

    options

    Properties for table creation. See options list for different tables. https://github.com/TIBCOSoftware/snappydata /blob/master/docs/programming_guide/tables_in_snappydata.md

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

    Annotations
    @Experimental()
  44. def createTable(tableName: String, provider: String, schema: StructType, options: Map[String, String], allowExisting: Boolean = false): DataFrame

    Permalink

    Creates a SnappyData managed table.

    Creates a SnappyData managed table. Any relation providers (e.g. row, column etc) supported by SnappyData can be created here.

    case class Data(col1: Int, col2: Int, col3: Int)
    val props = Map.empty[String, String]
    val data = Seq(Data(1, 2, 3), Data(7, 8, 9), Data(9, 2, 3), Data(4, 2, 3), Data(5, 6, 7))
    val dataDF = snc.createDataset(data)(Encoders.product)
    snappyContext.createTable(tableName, "column", dataDF.schema, props)

    For other external relation providers, use createExternalTable.

    tableName

    Name of the table

    provider

    Provider name such as 'COLUMN', 'ROW', 'JDBC' etc.

    schema

    Table schema

    options

    Properties for table creation. See options list for different tables. https://github.com/TIBCOSoftware/snappydata /blob/master/docs/programming_guide/tables_in_snappydata.md

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

  45. def createTable(tableName: String, provider: String, options: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Creates a SnappyData managed table.

    Creates a SnappyData managed table. Any relation providers (e.g. row, column etc) supported by SnappyData can be created here.

    val airlineDF = snappyContext.createTable(stagingAirline,
      "column", Map("buckets" -> "29"))

    For other external relation providers, use createExternalTable.

    tableName

    Name of the table

    provider

    Provider name such as 'COLUMN', 'ROW', 'JDBC', 'PARQUET' etc.

    options

    Properties for table creation

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

    Annotations
    @Experimental()
  46. def createTable(tableName: String, provider: String, options: Map[String, String], allowExisting: Boolean): DataFrame

    Permalink

    Creates a SnappyData managed table.

    Creates a SnappyData managed table. Any relation providers (e.g. row, column etc) supported by SnappyData can be created here.

    val airlineDF = snappyContext.createTable(stagingAirline,
      "column", Map("buckets" -> "29"))

    For other external relation providers, use createExternalTable.

    tableName

    Name of the table

    provider

    Provider name such as 'COLUMN', 'ROW', 'JDBC', 'PARQUET' etc.

    options

    Properties for table creation

    allowExisting

    When set to true it will ignore if a table with the same name is present, else it will throw table exist exception

    returns

    DataFrame for the table

  47. def delete(tableName: String, filterExpr: String): Int

    Permalink

    Delete all rows in table that match passed filter expression

    Delete all rows in table that match passed filter expression

    tableName

    table name

    filterExpr

    SQL WHERE criteria to select rows that will be updated

    returns

    number of rows deleted

    Annotations
    @DeveloperApi()
  48. def dropIndex(indexName: String, ifExists: Boolean): Unit

    Permalink

    Drops an index on a table

    Drops an index on a table

    indexName

    Index name which goes in catalog

    ifExists

    Drop if exists, else exit gracefully

  49. def dropTable(tableName: String, ifExists: Boolean = false): Unit

    Permalink

    Drop a SnappyData table created by a call to SnappyContext.createTable, createExternalTable or registerTempTable.

    Drop a SnappyData table created by a call to SnappyContext.createTable, createExternalTable or registerTempTable.

    tableName

    table to be dropped

    ifExists

    attempt drop only if the table exists

  50. def dropTempTable(tableName: String): Unit

    Permalink
    Definition Classes
    SQLContext
  51. def emptyDataFrame: DataFrame

    Permalink
    Definition Classes
    SQLContext
  52. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  53. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  54. def experimental: ExperimentalMethods

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @transient() @Unstable()
  55. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  56. def getAllConfs: Map[String, String]

    Permalink
    Definition Classes
    SQLContext
  57. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  58. def getConf(key: String, defaultValue: String): String

    Permalink
    Definition Classes
    SQLContext
  59. def getConf(key: String): String

    Permalink
    Definition Classes
    SQLContext
  60. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  61. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. def insert(tableName: String, rows: ArrayList[ArrayList[_]]): Int

    Permalink

    Insert one or more org.apache.spark.sql.Row into an existing table

    Insert one or more org.apache.spark.sql.Row into an existing table

    java.util.ArrayList[java.util.ArrayList[_] rows = ...    *
    snc.insert(tableName, rows)
    returns

    number of rows inserted

    Annotations
    @Experimental()
  63. def insert(tableName: String, rows: Row*): Int

    Permalink

    Insert one or more org.apache.spark.sql.Row into an existing table

    Insert one or more org.apache.spark.sql.Row into an existing table

    snc.insert(tableName, dataDF.collect(): _*)
    returns

    number of rows inserted

    Annotations
    @DeveloperApi()
  64. def isCached(tableName: String): Boolean

    Permalink
    Definition Classes
    SQLContext
  65. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  66. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def listenerManager: ExecutionListenerManager

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  68. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  81. def newSession(): SnappyContext

    Permalink
    Definition Classes
    SnappyContext → SQLContext
  82. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  83. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  84. def put(tableName: String, rows: ArrayList[ArrayList[_]]): Int

    Permalink

    Upsert one or more org.apache.spark.sql.Row into an existing table

    Upsert one or more org.apache.spark.sql.Row into an existing table

    java.util.ArrayList[java.util.ArrayList[_] rows = ...    *
     snSession.put(tableName, rows)
    Annotations
    @Experimental()
  85. def put(tableName: String, rows: Row*): Int

    Permalink

    Upsert one or more org.apache.spark.sql.Row into an existing table

    Upsert one or more org.apache.spark.sql.Row into an existing table

    snSession.put(tableName, dataDF.collect(): _*)
    Annotations
    @DeveloperApi()
  86. def queryApproxTSTopK(topK: String, startTime: Long, endTime: Long, k: Int): DataFrame

    Permalink
  87. def queryApproxTSTopK(topKName: String, startTime: Long, endTime: Long): DataFrame

    Permalink

    To do

    why do we need this method? K is optional in the above method

  88. def queryApproxTSTopK(topKName: String, startTime: String = null, endTime: String = null, k: Int = 1): DataFrame

    Permalink

    Fetch the topK entries in the Approx TopK synopsis for the specified time interval.

    Fetch the topK entries in the Approx TopK synopsis for the specified time interval. See _createTopK_ for how to create this data structure and associate this to a base table (i.e. the full data set). The time interval specified here should not be less than the minimum time interval used when creating the TopK synopsis.

    topKName

    - The topK structure that is to be queried.

    startTime

    start time as string of the format "yyyy-mm-dd hh:mm:ss". If passed as null, oldest interval is considered as the start interval.

    endTime

    end time as string of the format "yyyy-mm-dd hh:mm:ss". If passed as null, newest interval is considered as the last interval.

    k

    Optional. Number of elements to be queried. This is to be passed only for stream summary

    returns

    returns the top K elements with their respective frequencies between two time

    To do

    provide an example and explain the returned DataFrame. Key is the attribute stored but the value is a struct containing count_estimate, and lower, upper bounds? How many elements are returned if K is not specified?

  89. def range(start: Long, end: Long, step: Long, numPartitions: Int): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  90. def range(start: Long, end: Long, step: Long): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  91. def range(start: Long, end: Long): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  92. def range(end: Long): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  93. def read: DataFrameReader

    Permalink
    Definition Classes
    SQLContext
  94. def readStream: DataStreamReader

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @Experimental() @Evolving()
  95. def saveStream[T](stream: DStream[T], aqpTables: Seq[String], transformer: Option[(RDD[T]) ⇒ RDD[Row]])(implicit v: scala.reflect.api.JavaUniverse.TypeTag[T]): Unit

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Annotations
    @DeveloperApi()
    To do

    do we need this anymore? If useful functionality, make this private to sql package ... SchemaDStream should use the data source API? Tagging as developer API, for now

  96. def sessionState: SnappySessionState

    Permalink
    Definition Classes
    SnappyContext → SQLContext
  97. def setConf(key: String, value: String): Unit

    Permalink
    Definition Classes
    SQLContext
  98. def setConf(props: Properties): Unit

    Permalink
    Definition Classes
    SQLContext
  99. def setCurrentSchema(schemaName: String): Unit

    Permalink

    Set current database/schema.

    Set current database/schema.

    schemaName

    schema name which goes in the catalog

  100. val snappySession: SnappySession

    Permalink
  101. def sparkContext: SparkContext

    Permalink
    Definition Classes
    SQLContext
  102. val sparkSession: SparkSession

    Permalink
    Definition Classes
    SQLContext
  103. def sql(sqlText: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
  104. def sqlUncached(sqlText: String): DataFrame

    Permalink

    Run SQL string without any plan caching.

  105. def streams: StreamingQueryManager

    Permalink
    Definition Classes
    SQLContext
  106. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  107. def table(tableName: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
  108. def tableNames(databaseName: String): Array[String]

    Permalink
    Definition Classes
    SQLContext
  109. def tableNames(): Array[String]

    Permalink
    Definition Classes
    SQLContext
  110. def tables(databaseName: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
  111. def tables(): DataFrame

    Permalink
    Definition Classes
    SQLContext
  112. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  113. def truncateTable(tableName: String, ifExists: Boolean = false): Unit

    Permalink

    Empties the contents of the table without deleting the catalog entry.

    Empties the contents of the table without deleting the catalog entry.

    tableName

    full table name to be truncated

    ifExists

    attempt truncate only if the table exists

  114. def udf: UDFRegistration

    Permalink
    Definition Classes
    SQLContext
  115. def uncacheTable(tableName: String): Unit

    Permalink
    Definition Classes
    SQLContext
  116. def update(tableName: String, filterExpr: String, newColumnValues: ArrayList[_], updateColumns: ArrayList[String]): Int

    Permalink

    Update all rows in table that match passed filter expression

    Update all rows in table that match passed filter expression

    snappyContext.update("jdbcTable", "ITEMREF = 3" , Row(99) , "ITEMREF" )
    tableName

    table name which needs to be updated

    filterExpr

    SQL WHERE criteria to select rows that will be updated

    newColumnValues

    A list containing all the updated column values. They MUST match the updateColumn list passed

    updateColumns

    List of all column names being updated

    Annotations
    @Experimental()
  117. def update(tableName: String, filterExpr: String, newColumnValues: Row, updateColumns: String*): Int

    Permalink

    Update all rows in table that match passed filter expression

    Update all rows in table that match passed filter expression

    snappyContext.update("jdbcTable", "ITEMREF = 3" , Row(99) , "ITEMREF" )
    tableName

    table name which needs to be updated

    filterExpr

    SQL WHERE criteria to select rows that will be updated

    newColumnValues

    A single Row containing all updated column values. They MUST match the updateColumn list passed

    updateColumns

    List of all column names being updated

    Annotations
    @DeveloperApi()
  118. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  119. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  120. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def applySchema(rdd: JavaRDD[_], beanClass: Class[_]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use createDataFrame instead.

  2. def applySchema(rdd: RDD[_], beanClass: Class[_]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use createDataFrame instead.

  3. def applySchema(rowRDD: JavaRDD[Row], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use createDataFrame instead.

  4. def applySchema(rowRDD: RDD[Row], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.3.0) Use createDataFrame instead.

  5. def jdbc(url: String, table: String, theParts: Array[String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.jdbc() instead.

  6. def jdbc(url: String, table: String, columnName: String, lowerBound: Long, upperBound: Long, numPartitions: Int): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.jdbc() instead.

  7. def jdbc(url: String, table: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.jdbc() instead.

  8. def jsonFile(path: String, samplingRatio: Double): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  9. def jsonFile(path: String, schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  10. def jsonFile(path: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  11. def jsonRDD(json: JavaRDD[String], samplingRatio: Double): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  12. def jsonRDD(json: RDD[String], samplingRatio: Double): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  13. def jsonRDD(json: JavaRDD[String], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  14. def jsonRDD(json: RDD[String], schema: StructType): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  15. def jsonRDD(json: JavaRDD[String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  16. def jsonRDD(json: RDD[String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.json() instead.

  17. def load(source: String, schema: StructType, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.format(source).schema(schema).options(options).load() instead.

  18. def load(source: String, schema: StructType, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.format(source).schema(schema).options(options).load() instead.

  19. def load(source: String, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.format(source).options(options).load() instead.

  20. def load(source: String, options: Map[String, String]): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.format(source).options(options).load() instead.

  21. def load(path: String, source: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.format(source).load(path) instead.

  22. def load(path: String): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated
    Deprecated

    (Since version 1.4.0) Use read.load(path) instead.

  23. def parquetFile(paths: String*): DataFrame

    Permalink
    Definition Classes
    SQLContext
    Annotations
    @deprecated @varargs()
    Deprecated

    (Since version 1.4.0) Use read.parquet() instead.

Inherited from SQLContext

Inherited from Serializable

Inherited from Serializable

Inherited from internal.Logging

Inherited from AnyRef

Inherited from Any

Ungrouped