Uses of Class
net.finmath.montecarlo.interestrate.models.covariance.AbstractLIBORCovarianceModel
| Package | Description |
|---|---|
| net.finmath.montecarlo.interestrate.models.covariance |
Contains covariance models and their calibration as plug-ins for the LIBOR market model and volatility and correlation models which may be used to build a covariance model.
|
-
Uses of AbstractLIBORCovarianceModel in net.finmath.montecarlo.interestrate.models.covariance
Subclasses of AbstractLIBORCovarianceModel in net.finmath.montecarlo.interestrate.models.covariance Modifier and Type Class Description classAbstractLIBORCovarianceModelParametricBase class for parametric covariance models, see alsoAbstractLIBORCovarianceModel.classBlendedLocalVolatilityModelBlended model (or displaced diffusion model) build on top of a standard covariance model.classDisplacedLocalVolatilityModelDisplaced model build on top of a standard covariance model.classExponentialDecayLocalVolatilityModelExponential decay model build on top of a given covariance model.classHullWhiteLocalVolatilityModelSpecial variant of a blended model (or displaced diffusion model) build on top of a standard covariance model using the special function corresponding to the Hull-White local volatility.classLIBORCovarianceModelBHA five parameter covariance model corresponding.classLIBORCovarianceModelExponentialForm5ParamThe five parameter covariance model consisting of anLIBORVolatilityModelMaturityDependentFourParameterExponentialFormand anLIBORCorrelationModelExponentialDecay.classLIBORCovarianceModelExponentialForm7ParamclassLIBORCovarianceModelFromVolatilityAndCorrelationA covariance model build from a volatility model implementingLIBORVolatilityModeland a correlation model implementingLIBORCorrelationModel.classLIBORCovarianceModelStochasticHestonVolatilityAs Heston like stochastic volatility model, using a process \( \lambda(t) = \sqrt(V(t)) \) \[ dV(t) = \kappa ( \theta - V(t) ) dt + \xi \sqrt{V(t)} dW_{1}(t), \quad V(0) = 1.0, \] where \( \lambda(0) = 1 \) to scale all factor loadings \( f_{i} \) returned by a given covariance model.classLIBORCovarianceModelStochasticVolatilitySimple stochastic volatility model, using a process \[ d\lambda(t) = \nu \lambda(t) \left( \rho \mathrm{d} W_{1}(t) + \sqrt{1-\rho^{2}} \mathrm{d} W_{2}(t) \right) \text{,} \] where \( \lambda(0) = 1 \) to scale all factor loadings \( f_{i} \) returned by a given covariance model.