Uses of Class
net.finmath.optimizer.LevenbergMarquardt
| Package | Description |
|---|---|
| net.finmath.optimizer |
This package provides classes with numerical algorithm for optimization of
an objective function and a factory to easy construction of the optimizers.
|
-
Uses of LevenbergMarquardt in net.finmath.optimizer
Methods in net.finmath.optimizer that return LevenbergMarquardt Modifier and Type Method Description LevenbergMarquardtLevenbergMarquardt. clone()Create a clone of this LevenbergMarquardt optimizer.LevenbergMarquardtLevenbergMarquardt. getCloneWithModifiedTargetValues(double[] newTargetVaues, double[] newWeights, boolean isUseBestParametersAsInitialParameters)Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.LevenbergMarquardtLevenbergMarquardt. getCloneWithModifiedTargetValues(List<Number> newTargetVaues, List<Number> newWeights, boolean isUseBestParametersAsInitialParameters)Create a clone of this LevenbergMarquardt optimizer with a new vector for the target values and weights.LevenbergMarquardtLevenbergMarquardt. setErrorTolerance(double errorTolerance)Set the error tolerance.LevenbergMarquardtLevenbergMarquardt. setInitialParameters(double[] initialParameters)Set the initial parameters for the solver.LevenbergMarquardtLevenbergMarquardt. setLambda(double lambda)Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix, that is the \( \lambda \) in \( H + \lambda \diag H \).LevenbergMarquardtLevenbergMarquardt. setMaxIteration(int maxIteration)Set the maximum number of iterations to be performed until the solver gives up.LevenbergMarquardtLevenbergMarquardt. setParameterSteps(double[] parameterSteps)Set the parameter step for the solver.LevenbergMarquardtLevenbergMarquardt. setTargetValues(double[] targetValues)Set the target values for the solver.LevenbergMarquardtLevenbergMarquardt. setWeights(double[] weights)Set the weight for the objective function.