Package net.finmath.montecarlo.process
Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme.
The Euler scheme implementation is more generic and can be configured for
log-Euler scheme or predictor corrector scheme.
The parameters have to be provided by a process model.
- Author:
- Christian Fries
- See Also:
net.finmath.montecarlo.model
-
Interface Summary Interface Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess).Process The interface for a stochastic process X.ProcessTimeDiscretizationProvider An object implementing this interfaces provides a suggestion for an optimal time-discretization associated with this object. -
Class Summary Class Description EulerSchemeFromProcessModel This class implements some numerical schemes for multi-dimensional multi-factor Ito process.LinearInterpolatedTimeDiscreteProcess A linear interpolated time discrete process, that is, given a collection of tuples (Double, RandomVariableFromDoubleArray) representing realizations \( X(t_{i}) \) this class implements theProcessand creates a stochastic process \( t \mapsto X(t) \) where \[ X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1}) \] with \( t_{i} \leq t \leq t_{i+1} \).MonteCarloProcessFromProcessModel This class is an abstract base class to implement a multi-dimensional multi-factor Ito process. -
Enum Summary Enum Description EulerSchemeFromProcessModel.Scheme