LevenbergMarquardt |
LevenbergMarquardt.clone() |
Create a clone of this LevenbergMarquardt optimizer.
|
LevenbergMarquardt |
LevenbergMarquardt.getCloneWithModifiedTargetValues(double[] newTargetVaues,
double[] newWeights,
boolean isUseBestParametersAsInitialParameters) |
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
LevenbergMarquardt |
LevenbergMarquardt.getCloneWithModifiedTargetValues(List<Number> newTargetVaues,
List<Number> newWeights,
boolean isUseBestParametersAsInitialParameters) |
Create a clone of this LevenbergMarquardt optimizer with a new vector for the
target values and weights.
|
LevenbergMarquardt |
LevenbergMarquardt.setErrorTolerance(double errorTolerance) |
Set the error tolerance.
|
LevenbergMarquardt |
LevenbergMarquardt.setInitialParameters(double[] initialParameters) |
Set the initial parameters for the solver.
|
LevenbergMarquardt |
LevenbergMarquardt.setLambda(double lambda) |
Set the parameter λ used in the Tikhonov-like regularization of the Hessian matrix,
that is the \( \lambda \) in \( H + \lambda \diag H \).
|
LevenbergMarquardt |
LevenbergMarquardt.setMaxIteration(int maxIteration) |
Set the maximum number of iterations to be performed until the solver
gives up.
|
LevenbergMarquardt |
LevenbergMarquardt.setParameterSteps(double[] parameterSteps) |
Set the parameter step for the solver.
|
LevenbergMarquardt |
LevenbergMarquardt.setTargetValues(double[] targetValues) |
Set the target values for the solver.
|
LevenbergMarquardt |
LevenbergMarquardt.setWeights(double[] weights) |
Set the weight for the objective function.
|