Class MultiAssetBlackScholesModel

  • All Implemented Interfaces:
    ProcessModel

    public class MultiAssetBlackScholesModel
    extends AbstractProcessModel
    This class implements a multi-asset Black Scholes model providing an AbstractProcessModel. The class can be used with an EulerSchemeFromProcessModel to create a Monte-Carlo simulation. The model can be specified by general factor loadings, that is, in the form \[ dS_{i} = r S_{i} dt + S_{i} \sum_{j=0}^{m-1} f{i,j} dW_{j}, \quad S_{i}(0) = S_{i,0}, \] \[ dN = r N dt, \quad N(0) = N_{0}. \] Alternatively, the model can be specifies by providing volatilities and correlations from which the factor loadings \( f_{i,j} \) are derived such that \[ \sum_{k=0}^{m-1} f{i,k} f{j,k} = \sigma_{i} \sigma_{j} \rho_{i,j} \] such that the effective model is \[ dS_{i} = r S_{i} dt + \sigma_{i} S_{i} dW_{i}, \quad S_{i}(0) = S_{i,0}, \] \[ dN = r N dt, \quad N(0) = N_{0}, \] \[ dW_{i} dW_{j} = \rho_{i,j} dt, \] Note that in case the model is used with an EulerSchemeFromProcessModel, the BrownianMotion used can have a correlation, which alters the simulation (which is admissible). The specification above hold, provided that the BrownianMotion used has independent components. The class provides the model of \( S_{i} \) to an MonteCarloProcess via the specification of \( f = exp \), \( \mu_{i} = r - \frac{1}{2} \sigma_{i}^2 \), \( \lambda_{i,j} = \sigma_{i} g_{i,j} \), i.e., of the SDE \[ dX_{i} = \mu_{i} dt + \sum_{j=0}^{m-1} \lambda_{i,j} dW_{j}, \quad X_{i}(0) = \log(S_{i,0}), \] with \( S = f(X) \). See MonteCarloProcess for the notation.
    Version:
    1.1
    Author:
    Christian Fries
    See Also:
    The interface for numerical schemes., The interface for models provinding parameters to numerical schemes.
    • Constructor Detail

      • MultiAssetBlackScholesModel

        public MultiAssetBlackScholesModel​(RandomVariableFactory randomVariableFactory,
                                           double[] initialValues,
                                           double riskFreeRate,
                                           double[][] factorLoadings)
        Create a multi-asset Black-Scholes model.
        Parameters:
        randomVariableFactory - The RandomVariableFactory used to construct model parameters as random variables.
        initialValues - Spot values.
        riskFreeRate - The risk free rate.
        factorLoadings - The matrix of factor loadings, where factorLoadings[underlyingIndex][factorIndex] is the coefficient of the Brownian driver factorIndex used for the underlying underlyingIndex.
      • MultiAssetBlackScholesModel

        public MultiAssetBlackScholesModel​(RandomVariableFactory randomVariableFactory,
                                           double[] initialValues,
                                           double riskFreeRate,
                                           double[] volatilities,
                                           double[][] correlations)
        Create a multi-asset Black-Scholes model.
        Parameters:
        randomVariableFactory - The RandomVariableFactory used to construct model parameters as random variables.
        initialValues - Spot values.
        riskFreeRate - The risk free rate.
        volatilities - The log volatilities.
        correlations - A correlation matrix.
      • MultiAssetBlackScholesModel

        public MultiAssetBlackScholesModel​(double[] initialValues,
                                           double riskFreeRate,
                                           double[][] factorLoadings)
        Create a multi-asset Black-Scholes model.
        Parameters:
        initialValues - Spot values.
        riskFreeRate - The risk free rate.
        factorLoadings - The matrix of factor loadings, where factorLoadings[underlyingIndex][factorIndex] is the coefficient of the Brownian driver factorIndex used for the underlying underlyingIndex.
      • MultiAssetBlackScholesModel

        public MultiAssetBlackScholesModel​(double[] initialValues,
                                           double riskFreeRate,
                                           double[] volatilities,
                                           double[][] correlations)
        Create a multi-asset Black-Scholes model.
        Parameters:
        initialValues - Spot values.
        riskFreeRate - The risk free rate.
        volatilities - The log volatilities.
        correlations - A correlation matrix.
    • Method Detail

      • getInitialState

        public RandomVariable[] getInitialState​(MonteCarloProcess process)
        Description copied from interface: ProcessModel
        Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        Returns:
        The initial value of the state variable of the process Y(t=0).
      • getDrift

        public RandomVariable[] getDrift​(MonteCarloProcess process,
                                         int timeIndex,
                                         RandomVariable[] realizationAtTimeIndex,
                                         RandomVariable[] realizationPredictor)
        Description copied from interface: ProcessModel
        This method has to be implemented to return the drift, i.e. the coefficient vector
        μ = (μ1, ..., μn) such that X = f(Y) and
        dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
        in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        timeIndex - The time index (related to the model times discretization).
        realizationAtTimeIndex - The given realization at timeIndex
        realizationPredictor - The given realization at timeIndex+1 or null if no predictor is available.
        Returns:
        The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
      • getFactorLoading

        public RandomVariable[] getFactorLoading​(MonteCarloProcess process,
                                                 int timeIndex,
                                                 int component,
                                                 RandomVariable[] realizationAtTimeIndex)
        Description copied from interface: ProcessModel
        This method has to be implemented to return the factor loadings, i.e. the coefficient vector
        λj = (λ1,j, ..., λm,j) such that X = f(Y) and
        dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
        in an m-factor model. Here j denotes index of the component of the resulting process.
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        timeIndex - The time index (related to the model times discretization).
        component - The index j of the driven component.
        realizationAtTimeIndex - The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).
        Returns:
        The factor loading for given factor and component.
      • applyStateSpaceTransform

        public RandomVariable applyStateSpaceTransform​(MonteCarloProcess process,
                                                       int timeIndex,
                                                       int componentIndex,
                                                       RandomVariable randomVariable)
        Description copied from interface: ProcessModel
        Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        timeIndex - The time index (related to the model times discretization).
        componentIndex - The component index i.
        randomVariable - The state random variable Yi.
        Returns:
        New random variable holding the result of the state space transformation.
      • applyStateSpaceTransformInverse

        public RandomVariable applyStateSpaceTransformInverse​(MonteCarloProcess process,
                                                              int timeIndex,
                                                              int componentIndex,
                                                              RandomVariable randomVariable)
        Description copied from interface: ProcessModel
        Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        timeIndex - The time index (related to the model times discretization).
        componentIndex - The component index i.
        randomVariable - The state random variable Xi.
        Returns:
        New random variable holding the result of the state space transformation.
      • getNumeraire

        public RandomVariable getNumeraire​(MonteCarloProcess process,
                                           double time)
        Description copied from interface: ProcessModel
        Return the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.
        Parameters:
        process - The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.
        time - The time t for which the numeraire N(t) should be returned.
        Returns:
        The numeraire at the specified time as RandomVariable
      • getRandomVariableForConstant

        public RandomVariable getRandomVariableForConstant​(double value)
        Description copied from interface: ProcessModel
        Return a random variable initialized with a constant using the models random variable factory.
        Parameters:
        value - The constant value.
        Returns:
        A new random variable initialized with a constant value.
      • getNumberOfComponents

        public int getNumberOfComponents()
        Description copied from interface: ProcessModel
        Returns the number of components
        Returns:
        The number of components
      • getNumberOfFactors

        public int getNumberOfFactors()
        Description copied from interface: ProcessModel
        Returns the number of factors m, i.e., the number of independent Brownian drivers.
        Returns:
        The number of factors.
      • getCloneWithModifiedData

        public MultiAssetBlackScholesModel getCloneWithModifiedData​(Map<String,​Object> dataModified)
        Description copied from interface: ProcessModel
        Returns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter map dataModified. If data is provided which is ignored by the model no exception may be thrown.
        Parameters:
        dataModified - Key-value-map of parameters to modify.
        Returns:
        A clone of this model (or this model if no parameter was modified).
      • getRiskFreeRate

        public double getRiskFreeRate()
        Returns the risk free rate parameter of this model.
        Returns:
        Returns the riskFreeRate.
      • getFactorLoadingMatrix

        public double[][] getFactorLoadingMatrix()
        Returns the factorLoadings parameters of this model.
        Returns:
        Returns the factorLoadings.
      • getVolatilityVector

        public double[] getVolatilityVector()
        Returns the volatility parameters of this model.
        Returns:
        Returns the volatilities.
      • getCorrelationMatrix

        public double[][] getCorrelationMatrix()
        Returns the volatility parameters of this model.
        Returns:
        Returns the volatilities.