Uses of Interface
net.finmath.montecarlo.IndependentIncrements
-
Packages that use IndependentIncrements Package Description net.finmath.modelling.modelfactory Provides classes to build models from descriptors.net.finmath.montecarlo Provides basic interfaces and classes used in Monte-Carlo models (like LIBOR market model or Monte-Carlo simulation of a Black-Scholes model), e.g., the Monte-Carlo random variable and the Brownian motion.net.finmath.montecarlo.assetderivativevaluation Monte-Carlo models for asset value processes, like the Black Scholes model.net.finmath.montecarlo.process Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme. -
-
Uses of IndependentIncrements in net.finmath.modelling.modelfactory
Constructors in net.finmath.modelling.modelfactory with parameters of type IndependentIncrements Constructor Description AssetModelMonteCarloFactory(IndependentIncrements stochasticDriver)
Create the factory.AssetModelMonteCarloFactory(RandomVariableFactory randomVariableFactory, IndependentIncrements stochasticDriver)
Create the factory.AssetModelMonteCarloFactory(RandomVariableFactory randomVariableFactory, IndependentIncrements stochasticDriver, HestonModel.Scheme scheme)
Create the factory.BlackScholesModelMonteCarloFactory(RandomVariableFactory abstractRandomVariableFactory, IndependentIncrements brownianMotion)
HestonModelMonteCarloFactory(HestonModel.Scheme scheme, RandomVariableFactory abstractRandomVariableFactory, IndependentIncrements brownianMotion)
-
Uses of IndependentIncrements in net.finmath.montecarlo
Subinterfaces of IndependentIncrements in net.finmath.montecarlo Modifier and Type Interface Description interface
BrownianMotion
Interface description of a time-discrete n-dimensional Brownian motion W = (W1,...,Wn) where Wi is a Brownian motion.Classes in net.finmath.montecarlo that implement IndependentIncrements Modifier and Type Class Description class
BrownianBridge
This class implements a Brownian bridge, i.e., samples of realizations of a Brownian motion conditional to a given start and end value.class
BrownianMotionFromMersenneRandomNumbers
Implementation of a time-discrete n-dimensional Brownian motion W = (W1,...,Wn) where Wi is a Brownian motion and Wi, Wj are independent for i not equal j.class
BrownianMotionFromRandomNumberGenerator
Implementation of a time-discrete n-dimensional Brownian motion W = (W1,...,Wn) where Wi is a Brownian motion and Wi, Wj are independent for i not equal j.class
BrownianMotionLazyInit
Deprecated.Refactor rename.class
BrownianMotionView
A Brownian motion which is defined by some factors of a given Brownian motion, i.e., for a given multi-factorial Brownian motion W, this Brownian motion is given by ( W(i[0]), W(i[1]) W(i[2]), ..., W(i[n-1]) ) where i is a given array of integers.class
BrownianMotionWithControlVariate
Provides a Brownian motion from given (independent) increments and performs a control of the expectation and the standard deviation.class
CorrelatedBrownianMotion
Provides a correlated Brownian motion from given (independent) increments and a given matrix of factor loadings.class
GammaProcess
Implementation of a time-discrete n-dimensional Gamma process \( \Gamma = (\Gamma_{1},\ldots,\Gamma_{n}) \), where \( \Gamma_{i} \) is a Gamma process and \( \Gamma_{i} \), \( \Gamma_{j} \) are independent for i not equal j.class
IndependentIncrementsFromICDF
Implementation of a time-discrete n-dimensional sequence of independent increments W = (W1,...,Wn) form a given set of inverse cumulative distribution functions.class
JumpProcessIncrements
Implementation of a time-discrete n-dimensional jump process J = (J1,...,Jn) where Ji is a Poisson jump process and Ji, Jj are independent for i not equal j.class
MertonJumpProcess
Implementation of the compound Poisson process for the Merton jump diffusion model.class
VarianceGammaProcess
Implementation of a time-discrete n-dimensional Variance Gamma process via Brownian subordination through a Gamma Process.Methods in net.finmath.montecarlo that return IndependentIncrements Modifier and Type Method Description IndependentIncrements
GammaProcess. getCloneWithModifiedSeed(int seed)
IndependentIncrements
IndependentIncrements. getCloneWithModifiedSeed(int seed)
Return a new object implementing BrownianMotion having the same specifications as this object but a different seed for the random number generator.IndependentIncrements
IndependentIncrementsFromICDF. getCloneWithModifiedSeed(int seed)
IndependentIncrements
MertonJumpProcess. getCloneWithModifiedSeed(int seed)
IndependentIncrements
VarianceGammaProcess. getCloneWithModifiedSeed(int seed)
IndependentIncrements
GammaProcess. getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
IndependentIncrements
IndependentIncrements. getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
Return a new object implementing BrownianMotion having the same specifications as this object but a different time discretization.IndependentIncrements
IndependentIncrementsFromICDF. getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
IndependentIncrements
MertonJumpProcess. getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
IndependentIncrements
VarianceGammaProcess. getCloneWithModifiedTimeDiscretization(TimeDiscretization newTimeDiscretization)
-
Uses of IndependentIncrements in net.finmath.montecarlo.assetderivativevaluation
Constructors in net.finmath.montecarlo.assetderivativevaluation with parameters of type IndependentIncrements Constructor Description MonteCarloAssetModel(ProcessModel model, IndependentIncrements stochasticDriver)
Convenient constructor being the same as this(new EulerSchemeFromProcessModel(model, stochasticDriver)) -
Uses of IndependentIncrements in net.finmath.montecarlo.process
Methods in net.finmath.montecarlo.process that return IndependentIncrements Modifier and Type Method Description IndependentIncrements
EulerSchemeFromProcessModel. getStochasticDriver()
IndependentIncrements
MonteCarloProcess. getStochasticDriver()
Constructors in net.finmath.montecarlo.process with parameters of type IndependentIncrements Constructor Description EulerSchemeFromProcessModel(ProcessModel model, IndependentIncrements stochasticDriver)
Create an Euler discretization scheme.EulerSchemeFromProcessModel(ProcessModel model, IndependentIncrements stochasticDriver, EulerSchemeFromProcessModel.Scheme scheme)
Create an Euler discretization scheme.
-