Uses of Class
net.finmath.optimizer.StochasticLevenbergMarquardt.RegularizationMethod
-
Packages that use StochasticLevenbergMarquardt.RegularizationMethod Package Description net.finmath.optimizer This package provides classes with numerical algorithm for optimization of an objective function and a factory to easy construction of the optimizers. -
-
Uses of StochasticLevenbergMarquardt.RegularizationMethod in net.finmath.optimizer
Methods in net.finmath.optimizer that return StochasticLevenbergMarquardt.RegularizationMethod Modifier and Type Method Description static StochasticLevenbergMarquardt.RegularizationMethodStochasticLevenbergMarquardt.RegularizationMethod. valueOf(String name)Returns the enum constant of this type with the specified name.static StochasticLevenbergMarquardt.RegularizationMethod[]StochasticLevenbergMarquardt.RegularizationMethod. values()Returns an array containing the constants of this enum type, in the order they are declared.Constructors in net.finmath.optimizer with parameters of type StochasticLevenbergMarquardt.RegularizationMethod Constructor Description StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, int numberOfThreads)Create a Levenberg-Marquardt solver.StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService)Create a Levenberg-Marquardt solver.StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService)StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService, boolean isGradientValuationParallel)StochasticOptimizerFactoryLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, int maxIterations, double errorTolerance, int maxThreads)
-