Module net.finmath.lib
Class MertonModel
- java.lang.Object
-
- net.finmath.montecarlo.model.AbstractProcessModel
-
- net.finmath.montecarlo.assetderivativevaluation.models.MertonModel
-
- All Implemented Interfaces:
ProcessModel
public class MertonModel extends AbstractProcessModel
This class implements a Merton Model, that is, it provides the drift and volatility specification and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift). The model is \[ dS = \mu S dt + \sigma S dW + S dJ, \quad S(0) = S_{0}, \] \[ dN = r N dt, \quad N(0) = N_{0}, \] where \( W \) is Brownian motion and \( J \) is a jump process (compound Poisson process). The process \( J \) is given by \( J(t) = \sum_{i=1}^{N(t)} (Y_{i}-1) \), where \( \log(Y_{i}) \) are i.i.d. normals with mean \( a - \frac{1}{2} b^{2} \) and standard deviation \( b \). Here \( a \) is the jump size mean and \( b \) is the jump size std. dev. The model can be rewritten as \( S = \exp(X) \), where \[ dX = \mu dt + \sigma dW + dJ^{X}, \quad X(0) = \log(S_{0}), \] with \[ J^{X}(t) = \sum_{i=1}^{N(t)} \log(Y_{i}) \] with \( \mu = r - \frac{1}{2} \sigma^2 - (exp(a)-1) \lambda \). The class provides the model of S to anvia the specification of \( f = exp \), \( \mu = r - \frac{1}{2} \sigma^2 - (exp(a)-1) \lambda \), \( \lambda_{1,1} = \sigma, \lambda_{1,2} = a - \frac{1}{2} b^2, \lambda_{1,3} = b \), i.e., of the SDE \[ dX = \mu dt + \lambda_{1,1} dW + \lambda_{1,2} dN + \lambda_{1,3} Z dN, \quad X(0) = \log(S_{0}), \] with \( S = f(X) \). SeeMonteCarloProcessMonteCarloProcessfor the notation. For an example on the construction of the three factors \( dW \), \( dN \), and \( Z dN \) seeMonteCarloMertonModel.- Version:
- 1.0
- Author:
- Christian Fries
- See Also:
MonteCarloMertonModel,The interface for numerical schemes.,The interface for models provinding parameters to numerical schemes.
-
-
Constructor Summary
Constructors Constructor Description MertonModel(double initialValue, double riskFreeRate, double volatility, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.MertonModel(double initialValue, double riskFreeRate, double volatility, double discountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.MertonModel(double initialValue, double riskFreeRate, double volatility, double discountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.MertonModel(double initialValue, DiscountCurve discountCurveForForwardRate, double volatility, DiscountCurve discountCurveForDiscountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.MertonModel(double initialValue, DiscountCurve discountCurveForForwardRate, double volatility, DiscountCurve discountCurveForDiscountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.MertonModel(MertonModelDescriptor descriptor)Create the model from a descriptor.MertonModel(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, RandomVariable volatility, DiscountCurve discountCurveForDiscountRate, RandomVariable jumpIntensity, RandomVariable jumpSizeMean, RandomVariable jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.MertonModel(RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable volatility, RandomVariable discountRate, RandomVariable jumpIntensity, RandomVariable jumpSizeMean, RandomVariable jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RandomVariableapplyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.RandomVariableapplyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)Applies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.ProcessModelgetCloneWithModifiedData(Map<String,Object> dataModified)Returns a clone of this model where the specified properties have been modified.RandomVariable[]getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)This method has to be implemented to return the drift, i.e.RandomVariable[]getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)This method has to be implemented to return the factor loadings, i.e.RandomVariable[]getInitialState(MonteCarloProcess process)Returns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.RandomVariablegetJumpIntensity()RandomVariablegetJumpSizeMean()RandomVariablegetJumpSizeStdDev()intgetNumberOfComponents()Returns the number of componentsintgetNumberOfFactors()Returns the number of factors m, i.e., the number of independent Brownian drivers.RandomVariablegetNumeraire(MonteCarloProcess process, double time)Return the numeraire at a given time index.RandomVariablegetRandomVariableForConstant(double value)Return a random variable initialized with a constant using the models random variable factory.RandomVariablegetRiskFreeRate()RandomVariablegetVolatility()-
Methods inherited from class net.finmath.montecarlo.model.AbstractProcessModel
getInitialValue, getReferenceDate
-
-
-
-
Constructor Detail
-
MertonModel
public MertonModel(RandomVariable initialValue, DiscountCurve discountCurveForForwardRate, RandomVariable volatility, DiscountCurve discountCurveForDiscountRate, RandomVariable jumpIntensity, RandomVariable jumpSizeMean, RandomVariable jumpSizeStDev, RandomVariableFactory randomVariableFactory)
Create a Merton model.- Parameters:
initialValue- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratevolatility- The log volatility.discountCurveForDiscountRate- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratejumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.randomVariableFactory- The factory to be used to construct random variables.
-
MertonModel
public MertonModel(double initialValue, DiscountCurve discountCurveForForwardRate, double volatility, DiscountCurve discountCurveForDiscountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.- Parameters:
initialValue- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratevolatility- The log volatility.discountCurveForDiscountRate- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratejumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.randomVariableFactory- The factory to be used to construct random variables.
-
MertonModel
public MertonModel(RandomVariable initialValue, RandomVariable riskFreeRate, RandomVariable volatility, RandomVariable discountRate, RandomVariable jumpIntensity, RandomVariable jumpSizeMean, RandomVariable jumpSizeStDev, RandomVariableFactory randomVariableFactory)
Create a Merton model.- Parameters:
initialValue- Spot value.riskFreeRate- The risk free rate.volatility- The log volatility.discountRate- The discount rate used in the numeraire.jumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.randomVariableFactory- The factory to be used to construct random variables.
-
MertonModel
public MertonModel(double initialValue, double riskFreeRate, double volatility, double discountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev, RandomVariableFactory randomVariableFactory)Create a Merton model.- Parameters:
initialValue- Spot value.riskFreeRate- The risk free rate.volatility- The log volatility.discountRate- The discount rate used in the numeraire.jumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.randomVariableFactory- The factory to be used to construct random variables.
-
MertonModel
public MertonModel(MertonModelDescriptor descriptor)
Create the model from a descriptor.- Parameters:
descriptor- A descriptor of the model.
-
MertonModel
public MertonModel(double initialValue, DiscountCurve discountCurveForForwardRate, double volatility, DiscountCurve discountCurveForDiscountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.- Parameters:
initialValue- \( S_{0} \) - spot - initial value of SdiscountCurveForForwardRate- The curve specifying \( t \mapsto exp(- r^{\text{c}}(t) \cdot t) \) - with \( r^{\text{c}}(t) \) the risk free ratevolatility- The log volatility.discountCurveForDiscountRate- The curve specifying \( t \mapsto exp(- r^{\text{d}}(t) \cdot t) \) - with \( r^{\text{d}}(t) \) the discount ratejumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.
-
MertonModel
public MertonModel(double initialValue, double riskFreeRate, double volatility, double discountRate, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.- Parameters:
initialValue- Spot value.riskFreeRate- The risk free rate.volatility- The log volatility.discountRate- The discount rate used in the numeraire.jumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.
-
MertonModel
public MertonModel(double initialValue, double riskFreeRate, double volatility, double jumpIntensity, double jumpSizeMean, double jumpSizeStDev)Create a Merton model.- Parameters:
initialValue- Spot value.riskFreeRate- The risk free rate.volatility- The log volatility.jumpIntensity- The intensity parameter lambda of the compound Poisson process.jumpSizeMean- The mean jump size of the normal distributes jump sizes of the compound Poisson process.jumpSizeStDev- The standard deviation of the normal distributes jump sizes of the compound Poisson process.
-
-
Method Detail
-
applyStateSpaceTransform
public RandomVariable applyStateSpaceTransform(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Description copied from interface:ProcessModelApplies the state space transform fi to the given state random variable such that Yi → fi(Yi) =: Xi.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Yi.- Returns:
- New random variable holding the result of the state space transformation.
-
applyStateSpaceTransformInverse
public RandomVariable applyStateSpaceTransformInverse(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable randomVariable)
Description copied from interface:ProcessModelApplies the inverse state space transform f-1i to the given random variable such that Xi → f-1i(Xi) =: Yi.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The component index i.randomVariable- The state random variable Xi.- Returns:
- New random variable holding the result of the state space transformation.
-
getInitialState
public RandomVariable[] getInitialState(MonteCarloProcess process)
Description copied from interface:ProcessModelReturns the initial value of the state variable of the process Y, not to be confused with the initial value of the model X (which is the state space transform applied to this state value.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.- Returns:
- The initial value of the state variable of the process Y(t=0).
-
getNumeraire
public RandomVariable getNumeraire(MonteCarloProcess process, double time)
Description copied from interface:ProcessModelReturn the numeraire at a given time index. Note: The random variable returned is a defensive copy and may be modified.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.time- The time t for which the numeraire N(t) should be returned.- Returns:
- The numeraire at the specified time as
RandomVariable
-
getDrift
public RandomVariable[] getDrift(MonteCarloProcess process, int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor)
Description copied from interface:ProcessModelThis method has to be implemented to return the drift, i.e. the coefficient vector
μ = (μ1, ..., μn) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process. Since the model is provided only on a time discretization, the method may also (should try to) return the drift as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).realizationAtTimeIndex- The given realization at timeIndexrealizationPredictor- The given realization attimeIndex+1or null if no predictor is available.- Returns:
- The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
-
getFactorLoading
public RandomVariable[] getFactorLoading(MonteCarloProcess process, int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex)
Description copied from interface:ProcessModelThis method has to be implemented to return the factor loadings, i.e. the coefficient vector
λj = (λ1,j, ..., λm,j) such that X = f(Y) and
dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
in an m-factor model. Here j denotes index of the component of the resulting process.- Parameters:
process- The discretization process generating this model. The process provides call backs for TimeDiscretization and allows calls to getProcessValue for timeIndices less or equal the given one.timeIndex- The time index (related to the model times discretization).componentIndex- The index j of the driven component.realizationAtTimeIndex- The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).- Returns:
- The factor loading for given factor and component.
-
getNumberOfComponents
public int getNumberOfComponents()
Description copied from interface:ProcessModelReturns the number of components- Returns:
- The number of components
-
getNumberOfFactors
public int getNumberOfFactors()
Description copied from interface:ProcessModelReturns the number of factors m, i.e., the number of independent Brownian drivers.- Returns:
- The number of factors.
-
getRandomVariableForConstant
public RandomVariable getRandomVariableForConstant(double value)
Description copied from interface:ProcessModelReturn a random variable initialized with a constant using the models random variable factory.- Parameters:
value- The constant value.- Returns:
- A new random variable initialized with a constant value.
-
getCloneWithModifiedData
public ProcessModel getCloneWithModifiedData(Map<String,Object> dataModified)
Description copied from interface:ProcessModelReturns a clone of this model where the specified properties have been modified. Note that there is no guarantee that a model reacts on a specification of a properties in the parameter mapdataModified. If data is provided which is ignored by the model no exception may be thrown.- Parameters:
dataModified- Key-value-map of parameters to modify.- Returns:
- A clone of this model (or this model if no parameter was modified).
-
getRiskFreeRate
public RandomVariable getRiskFreeRate()
- Returns:
- the riskFreeRate
-
getVolatility
public RandomVariable getVolatility()
- Returns:
- the volatility
-
getJumpIntensity
public RandomVariable getJumpIntensity()
- Returns:
- the jumpIntensity
-
getJumpSizeMean
public RandomVariable getJumpSizeMean()
- Returns:
- the jumpSizeMean
-
getJumpSizeStdDev
public RandomVariable getJumpSizeStdDev()
- Returns:
- the jumpSizeStdDev
-
-