Uses of Package
net.finmath.montecarlo.process
-
Packages that use net.finmath.montecarlo.process Package Description net.finmath.montecarlo.assetderivativevaluation Monte-Carlo models for asset value processes, like the Black Scholes model.net.finmath.montecarlo.assetderivativevaluation.models Equity models implementingProcessModel
e.g.net.finmath.montecarlo.crosscurrency Provides classes for Cross-Currency models to be implemented via Monte-Carlo algorithms fromnet.finmath.montecarlo.process
.net.finmath.montecarlo.hybridassetinterestrate Provides interfaces and classes needed to generate a Hybrid Asset LIBOR Market Model.net.finmath.montecarlo.interestrate Provides interfaces and classes needed to generate interest rate models model (using numerical algorithms fromnet.finmath.montecarlo.process
.net.finmath.montecarlo.interestrate.models Interest rate models implementingProcessModel
e.g.net.finmath.montecarlo.interestrate.products Provides classes which implement financial products which may be valued using anet.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulationModel
.net.finmath.montecarlo.model Provides an interface and a base class for process models, i.e., models providing the parameters for stochastic processes.net.finmath.montecarlo.process Interfaced for stochastic processes and numerical schemes for stochastic processes (SDEs), like the Euler scheme. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.assetderivativevaluation Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.assetderivativevaluation.models Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.crosscurrency Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.hybridassetinterestrate Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate.models Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.interestrate.products Class Description ProcessTimeDiscretizationProvider An object implementing this interfaces provides a suggestion for an optimal time-discretization associated with this object. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.model Class Description MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
. -
Classes in net.finmath.montecarlo.process used by net.finmath.montecarlo.process Class Description EulerSchemeFromProcessModel This class implements some numerical schemes for multi-dimensional multi-factor Ito process.EulerSchemeFromProcessModel.Scheme LinearInterpolatedTimeDiscreteProcess A linear interpolated time discrete process, that is, given a collection of tuples (Double
,RandomVariable
) representing realizations \( X(t_{i}) \) this class implements theProcess
and creates a stochastic process \( t \mapsto X(t) \) where \[ X(t) = \frac{t_{i+1} - t}{t_{i+1}-t_{i}} X(t_{i}) + \frac{t - t_{i}}{t_{i+1}-t_{i}} X(t_{i+1}) \] with \( t_{i} \leq t \leq t_{i+1} \).MonteCarloProcess The interface for a process (numerical scheme) of a stochastic process X where X = f(Y) and Y is an Itô process
\[ dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m} \] The parameters are provided by a model implementingProcessModel
: The value of Y(0) is provided by the methodProcessModel.getInitialState(net.finmath.montecarlo.process.MonteCarloProcess)
.MonteCarloProcessFromProcessModel This class is an abstract base class to implement a multi-dimensional multi-factor Ito process.Process The interface for a stochastic process X.