Uses of Class
net.finmath.optimizer.StochasticLevenbergMarquardt.RegularizationMethod
-
Packages that use StochasticLevenbergMarquardt.RegularizationMethod Package Description net.finmath.optimizer This package provides classes with numerical algorithm for optimization of an objective function and a factory to easy construction of the optimizers. -
-
Uses of StochasticLevenbergMarquardt.RegularizationMethod in net.finmath.optimizer
Methods in net.finmath.optimizer that return StochasticLevenbergMarquardt.RegularizationMethod Modifier and Type Method Description static StochasticLevenbergMarquardt.RegularizationMethod
StochasticLevenbergMarquardt.RegularizationMethod. valueOf(String name)
Returns the enum constant of this type with the specified name.static StochasticLevenbergMarquardt.RegularizationMethod[]
StochasticLevenbergMarquardt.RegularizationMethod. values()
Returns an array containing the constants of this enum type, in the order they are declared.Constructors in net.finmath.optimizer with parameters of type StochasticLevenbergMarquardt.RegularizationMethod Constructor Description StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, int numberOfThreads)
Create a Levenberg-Marquardt solver.StochasticLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService)
Create a Levenberg-Marquardt solver.StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService)
StochasticLevenbergMarquardtAD(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] parameterSteps, int maxIteration, double errorTolerance, ExecutorService executorService, boolean isGradientValuationParallel)
StochasticOptimizerFactoryLevenbergMarquardt(StochasticLevenbergMarquardt.RegularizationMethod regularizationMethod, int maxIterations, double errorTolerance, int maxThreads)
-