@Internal public class PythonTableFunction extends TableFunction<org.apache.flink.types.Row> implements PythonFunction
| 构造器和说明 |
|---|
PythonTableFunction(String name,
byte[] serializedScalarFunction,
org.apache.flink.api.common.typeinfo.TypeInformation[] inputTypes,
org.apache.flink.api.java.typeutils.RowTypeInfo resultType,
PythonFunctionKind pythonFunctionKind,
boolean deterministic,
PythonEnv pythonEnv) |
| 限定符和类型 | 方法和说明 |
|---|---|
void |
eval(Object... args) |
org.apache.flink.api.common.typeinfo.TypeInformation[] |
getParameterTypes(Class[] signature)
Returns
TypeInformation about the operands of the evaluation method with a given
signature. |
PythonEnv |
getPythonEnv()
Returns the Python execution environment.
|
PythonFunctionKind |
getPythonFunctionKind()
Returns the kind of the user-defined python function.
|
org.apache.flink.api.common.typeinfo.TypeInformation<org.apache.flink.types.Row> |
getResultType()
Returns the result type of the evaluation method.
|
byte[] |
getSerializedPythonFunction()
Returns the serialized representation of the user-defined python function.
|
TypeInference |
getTypeInference(DataTypeFactory typeFactory)
Returns the logic for performing type inference of a call to this function definition.
|
boolean |
isDeterministic()
Returns information about the determinism of the function's results.
|
String |
toString()
Returns the name of the UDF that is used for plan explanation and logging.
|
collect, getKind, setCollectorclose, functionIdentifier, openclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetRequirementspublic PythonTableFunction(String name, byte[] serializedScalarFunction, org.apache.flink.api.common.typeinfo.TypeInformation[] inputTypes, org.apache.flink.api.java.typeutils.RowTypeInfo resultType, PythonFunctionKind pythonFunctionKind, boolean deterministic, PythonEnv pythonEnv)
public void eval(Object... args)
public byte[] getSerializedPythonFunction()
PythonFunctiongetSerializedPythonFunction 在接口中 PythonFunctionpublic PythonEnv getPythonEnv()
PythonFunctiongetPythonEnv 在接口中 PythonFunctionpublic PythonFunctionKind getPythonFunctionKind()
PythonFunctiongetPythonFunctionKind 在接口中 PythonFunctionpublic boolean isDeterministic()
FunctionDefinitionIt returns true if and only if a call to this function is guaranteed to
always return the same result given the same parameters. true is
assumed by default. If the function is not pure functional like random(), date(), now(), ...
this method must return false.
isDeterministic 在接口中 FunctionDefinitionpublic org.apache.flink.api.common.typeinfo.TypeInformation[] getParameterTypes(Class[] signature)
TableFunctionTypeInformation about the operands of the evaluation method with a given
signature.getParameterTypes 在类中 TableFunction<org.apache.flink.types.Row>public org.apache.flink.api.common.typeinfo.TypeInformation<org.apache.flink.types.Row> getResultType()
TableFunctiongetResultType 在类中 TableFunction<org.apache.flink.types.Row>public TypeInference getTypeInference(DataTypeFactory typeFactory)
UserDefinedFunctionThe type inference process is responsible for inferring unknown types of input arguments, validating input arguments, and producing result types. The type inference process happens independent of a function body. The output of the type inference is used to search for a corresponding runtime implementation.
Instances of type inference can be created by using TypeInference.newBuilder().
See BuiltInFunctionDefinitions for concrete usage examples.
The type inference for user-defined functions is automatically extracted using reflection. It
does this by analyzing implementation methods such as eval() or accumulate() and the generic
parameters of a function class if present. If the reflective information is not sufficient, it can
be supported and enriched with DataTypeHint and FunctionHint annotations.
Note: Overriding this method is only recommended for advanced users. If a custom type inference is specified, it is the responsibility of the implementer to make sure that the output of the type inference process matches with the implementation method:
The implementation method must comply with each DataType.getConversionClass() returned
by the type inference. For example, if DataTypes.TIMESTAMP(3).bridgedTo(java.sql.Timestamp.class)
is an expected argument type, the method must accept a call eval(java.sql.Timestamp).
Regular Java calling semantics (including type widening and autoboxing) are applied when calling
an implementation method which means that the signature can be eval(java.lang.Object).
The runtime will take care of converting the data to the data format specified by the
DataType.getConversionClass() coming from the type inference logic.
getTypeInference 在接口中 FunctionDefinitiongetTypeInference 在类中 TableFunction<org.apache.flink.types.Row>public String toString()
UserDefinedFunctiontoString 在类中 UserDefinedFunctionCopyright © 2014–2020 The Apache Software Foundation. All rights reserved.