| Modifier and Type | Class and Description |
|---|---|
static class |
BarnesHutTsne.Builder |
| Modifier and Type | Field and Description |
|---|---|
static String |
Y_GRAD |
adaGrad, finalMomentum, initialMomentum, iterationListener, learningRate, logger, maxIter, minGain, momentum, normalize, perplexity, realMin, stopLyingIteration, switchMomentumIteration, tolerance, useAdaGrad, usePca, Y| Constructor and Description |
|---|
BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x,
org.nd4j.linalg.api.ndarray.INDArray y,
int numDimensions,
double perplexity,
double theta,
int maxIter,
int stopLyingIteration,
int momentumSwitchIteration,
double momentum,
double finalMomentum,
double learningRate) |
BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x,
org.nd4j.linalg.api.ndarray.INDArray y,
int numDimensions,
String simiarlityFunction,
double theta,
boolean invert,
int maxIter,
double realMin,
double initialMomentum,
double finalMomentum,
double momentum,
int switchMomentumIteration,
boolean normalize,
boolean usePca,
int stopLyingIteration,
double tolerance,
double learningRate,
boolean useAdaGrad,
double perplexity,
double minGain) |
| Modifier and Type | Method and Description |
|---|---|
void |
accumulateScore(double accum)
Sets a rolling tally for the score.
|
void |
applyLearningRateScoreDecay()
Update learningRate using for this model.
|
int |
batchSize()
The current inputs batch size
|
void |
clear()
Clear input
|
Pair<org.nd4j.linalg.api.ndarray.INDArray,Double> |
computeGaussianKernel(org.nd4j.linalg.api.ndarray.INDArray distances,
double beta,
int k)
Computes a gaussian kernel
given a vector of squared distance distances
|
org.nd4j.linalg.api.ndarray.INDArray |
computeGaussianPerplexity(org.nd4j.linalg.api.ndarray.INDArray d,
double u)
Convert data to probability
co-occurrences (aka calculating the kernel)
|
void |
computeGradientAndScore()
Update the score
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data)
Fit the model to the given data
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data,
int nDims) |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param)
Get the parameter
|
double |
getPerplexity() |
String |
getSimiarlityFunction() |
double |
getTheta() |
Gradient |
gradient()
Calculate a gradient
|
protected Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> |
gradient(org.nd4j.linalg.api.ndarray.INDArray p) |
Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
void |
initParams()
Initialize the parameters
|
org.nd4j.linalg.api.ndarray.INDArray |
input()
The input/feature matrix for the model
|
boolean |
isInvert() |
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input)
Run one iteration
|
int |
numParams()
the number of parameters for the model
|
int |
numParams(boolean backwards)
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Parameters of the model (if any)
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable()
The param table
|
void |
plot(org.nd4j.linalg.api.ndarray.INDArray matrix,
int nDims,
List<String> labels,
String path)
Plot tsne
|
double |
score()
The score for the model
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setInvert(boolean invert) |
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Setter for the param table
|
void |
setSimiarlityFunction(String simiarlityFunction) |
void |
step(org.nd4j.linalg.api.ndarray.INDArray p,
int i)
An individual iteration
|
org.nd4j.linalg.api.ndarray.INDArray |
symmetrized(org.nd4j.linalg.api.ndarray.INDArray rowP,
org.nd4j.linalg.api.ndarray.INDArray colP,
org.nd4j.linalg.api.ndarray.INDArray valP)
Symmetrize the value matrix
|
void |
update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Perform one update applying the gradient
|
void |
validateInput()
Validate the input
|
public static final String Y_GRAD
public BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x,
org.nd4j.linalg.api.ndarray.INDArray y,
int numDimensions,
double perplexity,
double theta,
int maxIter,
int stopLyingIteration,
int momentumSwitchIteration,
double momentum,
double finalMomentum,
double learningRate)
public BarnesHutTsne(org.nd4j.linalg.api.ndarray.INDArray x,
org.nd4j.linalg.api.ndarray.INDArray y,
int numDimensions,
String simiarlityFunction,
double theta,
boolean invert,
int maxIter,
double realMin,
double initialMomentum,
double finalMomentum,
double momentum,
int switchMomentumIteration,
boolean normalize,
boolean usePca,
int stopLyingIteration,
double tolerance,
double learningRate,
boolean useAdaGrad,
double perplexity,
double minGain)
public String getSimiarlityFunction()
public void setSimiarlityFunction(String simiarlityFunction)
public boolean isInvert()
public void setInvert(boolean invert)
public double getTheta()
public double getPerplexity()
public org.nd4j.linalg.api.ndarray.INDArray computeGaussianPerplexity(org.nd4j.linalg.api.ndarray.INDArray d,
double u)
d - the data to convertu - the perplexity of the modelpublic org.nd4j.linalg.api.ndarray.INDArray input()
Modelpublic void validateInput()
ModelvalidateInput in interface Modelpublic ConvexOptimizer getOptimizer()
ModelgetOptimizer in interface Modelpublic org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
Modelpublic void initParams()
ModelinitParams in interface Modelpublic Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
ModelparamTable in interface Modelpublic void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
ModelsetParamTable in interface Modelpublic void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
Modelpublic void clear()
Modelprotected Pair<Double,org.nd4j.linalg.api.ndarray.INDArray> gradient(org.nd4j.linalg.api.ndarray.INDArray p)
public org.nd4j.linalg.api.ndarray.INDArray symmetrized(org.nd4j.linalg.api.ndarray.INDArray rowP,
org.nd4j.linalg.api.ndarray.INDArray colP,
org.nd4j.linalg.api.ndarray.INDArray valP)
rowP - colP - valP - public Pair<org.nd4j.linalg.api.ndarray.INDArray,Double> computeGaussianKernel(org.nd4j.linalg.api.ndarray.INDArray distances, double beta, int k)
distances - beta - public void fit()
Modelpublic void step(org.nd4j.linalg.api.ndarray.INDArray p,
int i)
p - the probabilities that certain points
are near each otheri - the iteration (primarily for debugging purposes)public void update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Modelpublic void plot(org.nd4j.linalg.api.ndarray.INDArray matrix,
int nDims,
List<String> labels,
String path)
throws IOException
plot in class Tsnematrix - the matrix to plotnDims - the numberlabels - path - the path to writeIOExceptionpublic double score()
Modelpublic void computeGradientAndScore()
ModelcomputeGradientAndScore in interface Modelpublic void accumulateScore(double accum)
ModelaccumulateScore in interface Modelaccum - the amount to accumpublic org.nd4j.linalg.api.ndarray.INDArray params()
Modelpublic int numParams()
Modelpublic int numParams(boolean backwards)
Modelpublic void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Modelpublic void applyLearningRateScoreDecay()
ModelapplyLearningRateScoreDecay in interface Modelpublic void fit(org.nd4j.linalg.api.ndarray.INDArray data)
Modelpublic void fit(org.nd4j.linalg.api.ndarray.INDArray data,
int nDims)
public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
Modelpublic Pair<Gradient,Double> gradientAndScore()
ModelgradientAndScore in interface Modelpublic int batchSize()
Modelpublic NeuralNetConfiguration conf()
Modelpublic void setConf(NeuralNetConfiguration conf)
ModelCopyright © 2016. All Rights Reserved.